These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36056054)

  • 1. Aerodynamics and three-dimensional effect of a translating bristled wing at low Reynolds numbers.
    Liu W; Sun M
    Sci Rep; 2022 Sep; 12(1):14966. PubMed ID: 36056054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flight efficiency is a key to diverse wing morphologies in small insects.
    Engels T; Kolomenskiy D; Lehmann FO
    J R Soc Interface; 2021 Oct; 18(183):20210518. PubMed ID: 34665973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerodynamics of two parallel bristled wings in low Reynolds number flow.
    Wu YK; Liu YP; Sun M
    Sci Rep; 2022 Jun; 12(1):10928. PubMed ID: 35764779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerodynamic effects of varying solid surface area of bristled wings performing clap and fling.
    Ford MP; Kasoju VT; Gaddam MG; Santhanakrishnan A
    Bioinspir Biomim; 2019 May; 14(4):046003. PubMed ID: 30991375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pausing after clap reduces power required to fling wings apart at low Reynolds number.
    Kasoju VT; Santhanakrishnan A
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34034247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bristles reduce the force required to 'fling' wings apart in the smallest insects.
    Jones SK; Yun YJ; Hedrick TL; Griffith BE; Miller LA
    J Exp Biol; 2016 Dec; 219(Pt 23):3759-3772. PubMed ID: 27903629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clap and fling mechanism with interacting porous wings in tiny insect flight.
    Santhanakrishnan A; Robinson AK; Jones S; Low AA; Gadi S; Hedrick TL; Miller LA
    J Exp Biol; 2014 Nov; 217(Pt 21):3898-909. PubMed ID: 25189374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific variation in bristle number on forewings of tiny insects does not influence clap-and-fling aerodynamics.
    Kasoju VT; Moen DS; Ford MP; Ngo TT; Santhanakrishnan A
    J Exp Biol; 2021 Sep; 224(18):. PubMed ID: 34286832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow development and leading edge vorticity in bristled insect wings.
    O'Callaghan F; Lehmann FO
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):219-229. PubMed ID: 36810678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid-structure interactions of bristled wings: the trade-off between weight and drag.
    Luna Lin Y; Pezzulla M; Reis PM
    J R Soc Interface; 2023 Sep; 20(206):20230266. PubMed ID: 37700710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of aerodynamic performance of a bristled wing by elliptic cylinders.
    Zhang W; Liang D; Tan D; Mei Y; Zhou X
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38314670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluid-dynamic characteristics of a bristled wing.
    Sunada S; Takashima H; Hattori T; Yasuda K; Kawachi K
    J Exp Biol; 2002 Sep; 205(Pt 17):2737-44. PubMed ID: 12151379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsteady aerodynamic forces of a flapping wing.
    Wu JH; Sun M
    J Exp Biol; 2004 Mar; 207(Pt 7):1137-50. PubMed ID: 14978056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ground effect on the aerodynamics of three-dimensional hovering wings.
    Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS
    Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A predictive model of the drag coefficient for a revolving wing at low Reynolds number.
    Oh S; Choi H
    Bioinspir Biomim; 2018 Aug; 13(5):054001. PubMed ID: 30039801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of spanwise flexibility on the performance of flapping flyers in forward flight.
    Kodali D; Medina C; Kang CK; Aono H
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29167372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bristled-wing design of materials, microstructures, and aerodynamics enables flapping flight in tiny wasps.
    Jiang Y; Zhao P; Cai X; Rong J; Dong Z; Chen H; Wu P; Hu H; Jin X; Zhang D; Liu H
    iScience; 2022 Jan; 25(1):103692. PubMed ID: 35036876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerodynamic effects of flexibility in flapping wings.
    Zhao L; Huang Q; Deng X; Sane SP
    J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.