These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36056150)

  • 1. Bioinspired polypyrrole based fibrillary artificial muscle with actuation and intrinsic sensing capabilities.
    Beregoi M; Beaumont S; Evanghelidis A; Otero TF; Enculescu I
    Sci Rep; 2022 Sep; 12(1):15019. PubMed ID: 36056150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Concept of an artificial muscle design on polypyrrole nanofiber scaffolds.
    Harjo M; Järvekülg M; Tamm T; Otero TF; Kiefer R
    PLoS One; 2020; 15(5):e0232851. PubMed ID: 32392238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous Sensing and Actuating Capabilities of a Triple-Layer Biomimetic Muscle for Soft Robotics.
    García-Córdova F; Guerrero-González A; Zueco J; Cabrera-Lozoya A
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special section on biomimetics of movement.
    Carpi F; Erb R; Jeronimidis G
    Bioinspir Biomim; 2011 Dec; 6(4):040201. PubMed ID: 22128305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mimicking muscle fiber structure and function through electromechanical actuation of electrospun silk fiber bundles.
    Severt SY; Maxwell SL; Bontrager JS; Leger JM; Murphy AR
    J Mater Chem B; 2017 Oct; 5(40):8105-8114. PubMed ID: 32264649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Work behaviors of artificial muscle based on cation driven polypyrrole.
    Fujisue H; Sendai T; Yamato K; Takashima W; Kaneto K
    Bioinspir Biomim; 2007 Jun; 2(2):S1-5. PubMed ID: 17671325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensing and tactile artificial muscles from reactive materials.
    Conzuelo LV; Arias-Pardilla J; Cauich-Rodríguez JV; Smit MA; Otero TF
    Sensors (Basel); 2010; 10(4):2638-74. PubMed ID: 22319265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypyrrole Actuator Based on Electrospun Microribbons.
    Beregoi M; Evanghelidis A; Diculescu VC; Iovu H; Enculescu I
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):38068-38075. PubMed ID: 28976177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic dual sensing-actuators based on conducting polymers. Galvanostatic theoretical model for actuators sensing temperature.
    Otero TF; Sanchez JJ; Martinez JG
    J Phys Chem B; 2012 May; 116(17):5279-90. PubMed ID: 22455612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of conductive electrospun silk fibroin scaffolds by coating with polypyrrole for biomedical applications.
    Aznar-Cervantes S; Roca MI; Martinez JG; Meseguer-Olmo L; Cenis JL; Moraleda JM; Otero TF
    Bioelectrochemistry; 2012 Jun; 85():36-43. PubMed ID: 22206726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Muscles Powered by Glucose.
    Mashayekhi Mazar F; Martinez JG; Tyagi M; Alijanianzadeh M; Turner APF; Jager EWH
    Adv Mater; 2019 Aug; 31(32):e1901677. PubMed ID: 31215110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinspired 3D Printable Soft Vacuum Actuators for Locomotion Robots, Grippers and Artificial Muscles.
    Tawk C; In Het Panhuis M; Spinks GM; Alici G
    Soft Robot; 2018 Dec; 5(6):685-694. PubMed ID: 30040042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A redox-generated biomimetic membrane potential across polypyrrole films.
    Nie X; Xiao T; Liu Z
    Chem Commun (Camb); 2019 Aug; 55(67):10023-10026. PubMed ID: 31378804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic dual sensing-actuators: theoretical description. Sensing electrolyte concentration and driving current.
    Martinez JG; Otero TF
    J Phys Chem B; 2012 Aug; 116(30):9223-30. PubMed ID: 22735073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chitosan-Polypyrrole Fiber for Strain Sensor.
    Lee S; Yi BJ; Chun KY; Lee J; Kim YT; Cha EJ; Kim SJ
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2537-41. PubMed ID: 26413701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
    Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY
    Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of unbound oligomers in the nucleation and growth of electrodeposited polypyrrole and method for preparing high strength, high conductivity films.
    Zheng W; Razal JM; Spinks GM; Truong VT; Whitten PG; Wallace GG
    Langmuir; 2012 Jul; 28(29):10891-7. PubMed ID: 22793159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Liquid Crystalline Spinning Enables Scalable Fabrication of High-Performing Fibrous Artificial Muscles.
    Hou W; Wang J; Lv JA
    Adv Mater; 2023 Apr; 35(16):e2211800. PubMed ID: 36812485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.