These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36056300)

  • 1. CNN-based two-branch multi-scale feature extraction network for retrosynthesis prediction.
    Yang F; Liu J; Zhang Q; Yang Z; Zhang X
    BMC Bioinformatics; 2022 Sep; 23(1):362. PubMed ID: 36056300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SB-Net: Synergizing CNN and LSTM networks for uncovering retrosynthetic pathways in organic synthesis.
    Mir BA; Tayara H; Chong KT
    Comput Biol Chem; 2024 Jun; 112():108130. PubMed ID: 38954849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
    Tetko IV; Karpov P; Van Deursen R; Godin G
    Nat Commun; 2020 Nov; 11(1):5575. PubMed ID: 33149154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training.
    Lin Z; Yin S; Shi L; Zhou W; Zhang YJ
    J Chem Inf Model; 2023 Apr; 63(7):1894-1905. PubMed ID: 36946514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Planning biosynthetic pathways of target molecules based on metabolic reaction prediction and AND-OR tree search.
    Zhang X; Liu J; Yang F; Zhang Q; Yang Z; Shah HA
    Comput Biol Chem; 2024 Aug; 111():108106. PubMed ID: 38833912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retrosynthetic reaction pathway prediction through neural machine translation of atomic environments.
    Ucak UV; Ashyrmamatov I; Ko J; Lee J
    Nat Commun; 2022 Mar; 13(1):1186. PubMed ID: 35246540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry-informed molecular graph as reaction descriptor for machine-learned retrosynthesis planning.
    Zhang B; Zhang X; Du W; Song Z; Zhang G; Zhang G; Wang Y; Chen X; Jiang J; Luo Y
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212711119. PubMed ID: 36191228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks.
    Zheng S; Rao J; Zhang Z; Xu J; Yang Y
    J Chem Inf Model; 2020 Jan; 60(1):47-55. PubMed ID: 31825611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-of-Health Prediction Using Transfer Learning and a Multi-Feature Fusion Model.
    Fu P; Chu L; Hou Z; Guo Z; Lin Y; Hu J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-scale data fusion framework for bone age assessment with convolutional neural networks.
    Liu Y; Zhang C; Cheng J; Chen X; Wang ZJ
    Comput Biol Med; 2019 May; 108():161-173. PubMed ID: 31005008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advancing molecular graphs with descriptors for the prediction of chemical reaction yields.
    Yarish D; Garkot S; Grygorenko OO; Radchenko DS; Moroz YS; Gurbych O
    J Comput Chem; 2023 Jan; 44(2):76-92. PubMed ID: 36264601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.