BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36056480)

  • 1. Flexible decision-making framework for developing operation protocol for water distribution systems.
    Abhijith GR; Ostfeld A
    J Environ Manage; 2022 Oct; 320():115817. PubMed ID: 36056480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk-based framework for optimizing residual chlorine in large water distribution systems.
    Sharif MN; Farahat A; Haider H; Al-Zahrani MA; Rodriguez MJ; Sadiq R
    Environ Monit Assess; 2017 Jul; 189(7):307. PubMed ID: 28573352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing booster chlorination in water distribution networks: a water quality index approach.
    Islam N; Sadiq R; Rodriguez MJ
    Environ Monit Assess; 2013 Oct; 185(10):8035-50. PubMed ID: 23532783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Making waves: Applying systems biology principles in water distribution systems engineering.
    Abhijith GR; Ostfeld A
    Water Res; 2022 Jul; 219():118527. PubMed ID: 35567846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inexact left-hand side two-stage chance-constrained programming for booster optimization in water distribution system.
    Wang Y; Zhu G
    J Environ Manage; 2021 Nov; 298():113372. PubMed ID: 34352481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of disinfectant dosage for simultaneous control of lead and disinfection-byproducts in water distribution networks.
    Maheshwari A; Abokifa A; Gudi RD; Biswas P
    J Environ Manage; 2020 Dec; 276():111186. PubMed ID: 32906070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrated EPANET-MSX process models of chlorine and its by-products in drinking water distribution systems.
    Fisher IH
    Water Environ Res; 2023 Dec; 95(12):e10949. PubMed ID: 38056599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inexact [Formula: see text] fuzzy chance-constrained programming of booster chlorination for water distribution system under uncertainty.
    Wang Y
    Environ Monit Assess; 2021 Apr; 193(5):300. PubMed ID: 33895884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of Nitrification Monitoring and Control Strategies in Drinking Water System.
    Hossain S; Chow CWK; Cook D; Sawade E; Hewa GA
    Int J Environ Res Public Health; 2022 Mar; 19(7):. PubMed ID: 35409686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of changing supply water quality on drinking water distribution networks: Changes in NOM optical properties, disinfection byproduct formation, and Mn deposition and release.
    Kurajica L; Ujević Bošnjak M; Kinsela AS; Štiglić J; Waite TD; Capak K; Pavlić Z
    Sci Total Environ; 2021 Mar; 762():144159. PubMed ID: 33360458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Population diversity in model potable water biofilms receiving chlorine or chloramine residual.
    Williams MM; Santo Domingo JW; Meckes MC
    Biofouling; 2005; 21(5-6):279-88. PubMed ID: 16522541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloramines in a pilot-scale water distribution system: Transformation of 17β-estradiol and formation of disinfection byproducts.
    He G; Li C; Dong F; Zhang T; Chen L; Cizmas L; Sharma VK
    Water Res; 2016 Dec; 106():41-50. PubMed ID: 27697683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems.
    Kurek W; Ostfeld A
    J Environ Manage; 2013 Jan; 115():189-97. PubMed ID: 23262407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint majorization of waterworks and secondary chlorination points considering the chloric odor and economic investment in the DWDS using machine learning and optimization algorithms.
    Mao R; Zhang K; Zhang Q; Xu J; Cen C; Pan R; Zhang T
    Water Res; 2022 Jul; 220():118595. PubMed ID: 35613482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mixing of arsenic-rich groundwater and surface water in drinking water distribution systems: Implications for contaminants, disinfection byproducts and organic components.
    Kurajica L; Ujević Bošnjak M; Kinsela AS; Bieroza M; Štiglić J; Waite TD; Capak K; Romić Ž
    Chemosphere; 2022 Apr; 292():133406. PubMed ID: 34958791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal concentrations in rivers and drinking water of Esmeraldas (Ecuador) under an intermittent water supply service.
    Molinero J; Cipriani-Avila I; Barrado M
    Environ Monit Assess; 2021 Nov; 193(12):775. PubMed ID: 34741668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal variability of halogenated disinfection by-products in a large-scale two-source water distribution system with enhanced chlorination.
    Dong F; Pang Z; Yu J; Deng J; Li X; Ma X; Dietrich AM; Deng Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127113. PubMed ID: 34523488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Development and application of a multi-species water quality model for water distribution systems with EPANET-MSX].
    Sun F; Chen JN; Zeng SY
    Huan Jing Ke Xue; 2008 Dec; 29(12):3360-7. PubMed ID: 19256368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica.
    Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG
    Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bottled water quality ranking via the multiple-criteria decision-making process: a case study of two-stage fuzzy AHP and TOPSIS.
    Nabizadeh R; Yousefzadeh S; Yaghmaeian K; Alimohammadi M; Mokhtari Z
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):20437-20448. PubMed ID: 34735703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.