These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36056850)

  • 1. The Impediments of Cancer Stem Cells and An Exploration into the Nanomedical Solutions for Glioblastoma.
    Jain H; Dhawan P; Rao S; Lalwani N; Shand H
    Anticancer Agents Med Chem; 2023; 23(4):368-382. PubMed ID: 36056850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanomedicine-mediated cancer stem cell therapy.
    Shen S; Xia JX; Wang J
    Biomaterials; 2016 Jan; 74():1-18. PubMed ID: 26433488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Implications and Future Perspectives of Nanomedicine for Cancer Stem Cell Targeted Therapies.
    Singh VK; Saini A; Chandra R
    Front Mol Biosci; 2017; 4():52. PubMed ID: 28785557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Can nanomedicines kill cancer stem cells?
    Zhao Y; Alakhova DY; Kabanov AV
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1763-83. PubMed ID: 24120657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective treatment of glioblastoma requires crossing the blood-brain barrier and targeting tumors including cancer stem cells: The promise of nanomedicine.
    Kim SS; Harford JB; Pirollo KF; Chang EH
    Biochem Biophys Res Commun; 2015 Dec; 468(3):485-9. PubMed ID: 26116770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanocarrier-mediated drugs targeting cancer stem cells: an emerging delivery approach.
    Malhi S; Gu X
    Expert Opin Drug Deliv; 2015 Jul; 12(7):1177-201. PubMed ID: 25601619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives.
    Khan M; Naeem M; Chaudary SA; Ahmed A; Ahmed A
    Curr Stem Cell Res Ther; 2024; 19(10):1312-1320. PubMed ID: 37818567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Nanotherapeutics Based on the Five Features Principle for Potent Elimination of Cancer Stem Cells.
    Zhang Z; Deng Q; Xiao C; Li Z; Yang X
    Acc Chem Res; 2022 Feb; 55(4):526-536. PubMed ID: 35077133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eradicating the tumor "seeds": nanomedicines-based therapies against cancer stem cells.
    Li L; Ni R; Zheng D; Chen L
    Daru; 2023 Jun; 31(1):83-94. PubMed ID: 36971921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting glioblastoma cancer stem cells: the next great hope?
    Khan IS; Ehtesham M
    Neurosurg Focus; 2014 Dec; 37(6):E7. PubMed ID: 25581936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer Stem Cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma.
    Biserova K; Jakovlevs A; Uljanovs R; Strumfa I
    Cells; 2021 Mar; 10(3):. PubMed ID: 33799798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PC3-Secreted Microprotein Is Expressed in Glioblastoma Stem-Like Cells and Human Glioma Tissues.
    Maruyama M; Nakano Y; Nishimura T; Iwata R; Matsuda S; Hayashi M; Nakai Y; Nonaka M; Sugimoto T
    Biol Pharm Bull; 2021 Jul; 44(7):910-919. PubMed ID: 33896885
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancer stem cells and drug resistance: the potential of nanomedicine.
    Vinogradov S; Wei X
    Nanomedicine (Lond); 2012 Apr; 7(4):597-615. PubMed ID: 22471722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolving landscape of glioblastoma stem cells.
    Yan K; Yang K; Rich JN
    Curr Opin Neurol; 2013 Dec; 26(6):701-7. PubMed ID: 24152818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cancer stem cell theory: therapeutic implications for nanomedicine.
    Wang K; Wu X; Wang J; Huang J
    Int J Nanomedicine; 2013; 8():899-908. PubMed ID: 23467584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting ROR1 inhibits the self-renewal and invasive ability of glioblastoma stem cells.
    Jung EH; Lee HN; Han GY; Kim MJ; Kim CW
    Cell Biochem Funct; 2016 Apr; 34(3):149-57. PubMed ID: 26923195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive activation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor κB signaling in glioblastoma cancer stem cells regulates the Notch pathway.
    Garner JM; Fan M; Yang CH; Du Z; Sims M; Davidoff AM; Pfeffer LM
    J Biol Chem; 2013 Sep; 288(36):26167-26176. PubMed ID: 23902772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteins of the Wnt signaling pathway as targets for the regulation of CD133+ cancer stem cells in glioblastoma.
    Shevchenko V; Arnotskaya N; Korneyko M; Zaytsev S; Khotimchenko Y; Sharma H; Bryukhovetskiy I
    Oncol Rep; 2019 May; 41(5):3080-3088. PubMed ID: 30864699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression.
    Hale JS; Otvos B; Sinyuk M; Alvarado AG; Hitomi M; Stoltz K; Wu Q; Flavahan W; Levison B; Johansen ML; Schmitt D; Neltner JM; Huang P; Ren B; Sloan AE; Silverstein RL; Gladson CL; DiDonato JA; Brown JM; McIntyre T; Hazen SL; Horbinski C; Rich JN; Lathia JD
    Stem Cells; 2014 Jul; 32(7):1746-58. PubMed ID: 24737733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanomedicine strategies for sustained, controlled, and targeted treatment of cancer stem cells of the digestive system.
    Xie FY; Xu WH; Yin C; Zhang GQ; Zhong YQ; Gao J
    World J Gastrointest Oncol; 2016 Oct; 8(10):735-744. PubMed ID: 27795813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.