BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 36057018)

  • 41. Upconversion Fluorescent Nanoprobe for Highly Sensitive In Vivo Cell Tracking.
    Shen S; Wang C
    Methods Mol Biol; 2020; 2126():85-93. PubMed ID: 32112381
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bovine Serum Albumin Coated Upconversion Nanoparticles for Near Infrared Fluorescence Imaging in Mouse Model.
    Chen D; Zhang F; Lv L; Han Z; Wang Y; Gu Y; Chen H
    J Nanosci Nanotechnol; 2017 Feb; 17(2):932-38. PubMed ID: 29671480
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells.
    Heo MB; Lim YT
    Biomaterials; 2014 Jan; 35(1):590-600. PubMed ID: 24125775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Outer-Frame-Degradable Nanovehicles Featuring Near-Infrared Dual Luminescence for
    Zheng F; Wang C; Meng T; Zhang Y; Zhang P; Shen Q; Zhang Y; Zhang J; Li J; Min Q; Chen J; Zhu JJ
    ACS Nano; 2019 Nov; 13(11):12577-12590. PubMed ID: 31657911
    [No Abstract]   [Full Text] [Related]  

  • 45. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.
    Hu Y; Wu B; Jin Q; Wang X; Li Y; Sun Y; Huo J; Zhao X
    Talanta; 2016 May; 152():504-12. PubMed ID: 26992548
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Energy Flux Manipulation in Upconversion Nanosystems.
    Liang L; Qin X; Zheng K; Liu X
    Acc Chem Res; 2019 Jan; 52(1):228-236. PubMed ID: 30557000
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance.
    Bonifaz L; Bonnyay D; Mahnke K; Rivera M; Nussenzweig MC; Steinman RM
    J Exp Med; 2002 Dec; 196(12):1627-38. PubMed ID: 12486105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Targeted and efficient activation of channelrhodopsins expressed in living cells via specifically-bound upconversion nanoparticles.
    Yadav K; Chou AC; Ulaganathan RK; Gao HD; Lee HM; Pan CY; Chen YT
    Nanoscale; 2017 Jul; 9(27):9457-9466. PubMed ID: 28660935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Construction of Hierarchical Polymer Brushes on Upconversion Nanoparticles via NIR-Light-Initiated RAFT Polymerization.
    Xie Z; Deng X; Liu B; Huang S; Ma P; Hou Z; Cheng Z; Lin J; Luan S
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30414-30425. PubMed ID: 28830139
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-doped K
    An R; Lei P; Zhang P; Xu X; Feng J; Zhang H
    Nanoscale; 2018 Jan; 10(3):1394-1402. PubMed ID: 29302668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving Flow Bead Assay: Combination of Near-Infrared Optical Tweezers Stabilizing and Upconversion Luminescence Encoding.
    Zheng B; Kang YF; Zhang T; Li CY; Huang S; Zhang ZL; Wu QS; Qi CB; Pang DW; Tang HW
    Anal Chem; 2020 Apr; 92(7):5258-5266. PubMed ID: 32156113
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Simple synthesis of carboxyl-functionalized upconversion nanoparticles for biosensing and bioimaging applications.
    Han GM; Li H; Huang XX; Kong DM
    Talanta; 2016 Jan; 147():207-12. PubMed ID: 26592597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent Advances in Upconversion Nanoparticles-Based Multifunctional Nanocomposites for Combined Cancer Therapy.
    Tian G; Zhang X; Gu Z; Zhao Y
    Adv Mater; 2015 Dec; 27(47):7692-712. PubMed ID: 26505885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tracing upconversion nanoparticle penetration in human skin.
    Khabir Z; Guller AE; Rozova VS; Liang L; Lai YJ; Goldys EM; Hu H; Vickery K; Zvyagin AV
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110480. PubMed ID: 31525599
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Near-Infrared Activation of Sensory Rhodopsin II Mediated by NIR-to-Blue Upconversion Nanoparticles.
    Yaguchi M; Jia X; Schlesinger R; Jiang X; Ataka K; Heberle J
    Front Mol Biosci; 2021; 8():782688. PubMed ID: 35252344
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Upconversion nanoparticles conjugated with curcumin as a photosensitizer to inhibit methicillin-resistant Staphylococcus aureus in lung under near infrared light.
    Ye Y; Li Y; Fang F
    Int J Nanomedicine; 2014; 9():5157-65. PubMed ID: 25395852
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent Advances of Upconversion Nanomaterials in the Biological Field.
    Gao C; Zheng P; Liu Q; Han S; Li D; Luo S; Temple H; Xing C; Wang J; Wei Y; Jiang T; Chen W
    Nanomaterials (Basel); 2021 Sep; 11(10):. PubMed ID: 34684916
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering of Lanthanide-Doped Upconversion Nanoparticles for Optical Encoding.
    Huang K; Idris NM; Zhang Y
    Small; 2016 Feb; 12(7):836-52. PubMed ID: 26681103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging.
    Cao T; Yang Y; Gao Y; Zhou J; Li Z; Li F
    Biomaterials; 2011 Apr; 32(11):2959-68. PubMed ID: 21262531
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Polyethyleneimine modification of aluminum hydroxide nanoparticle enhances antigen transportation and cross-presentation of dendritic cells.
    Dong H; Wen ZF; Chen L; Zhou N; Liu H; Dong S; Hu HM; Mou Y
    Int J Nanomedicine; 2018; 13():3353-3365. PubMed ID: 29922056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.