BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36057051)

  • 1. Is location a significant parameter in the layer dependent dissection properties of the aorta?
    Ríos-Ruiz I; Martínez MÁ; Peña E
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1887-1901. PubMed ID: 36057051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical characterization of a chronic type a dissected human aorta.
    Amabili M; Arena GO; Balasubramanian P; Breslavsky ID; Cartier R; Ferrari G; Holzapfel GA; Kassab A; Mongrain R
    J Biomech; 2020 Sep; 110():109978. PubMed ID: 32827785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional variation in biomechanical properties of ascending thoracic aortic aneurysms.
    Salmasi MY; Sasidharan S; Frattolin J; Edgar L; Stock U; Athanasiou T; Moore J
    Eur J Cardiothorac Surg; 2022 Aug; 62(3):. PubMed ID: 35894942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure damage mechanical properties of thoracic and abdominal porcine aorta layers and related constitutive modeling: phenomenological and microstructural approach.
    Peña JA; Martínez MA; Peña E
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1709-1730. PubMed ID: 31123879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta.
    Pasta S; Phillippi JA; Gleason TG; Vorp DA
    J Thorac Cardiovasc Surg; 2012 Feb; 143(2):460-7. PubMed ID: 21868041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical strength of aneurysmatic and dissected human thoracic aortas at different shear loading modes.
    Sommer G; Sherifova S; Oberwalder PJ; Dapunt OE; Ursomanno PA; DeAnda A; Griffith BE; Holzapfel GA
    J Biomech; 2016 Aug; 49(12):2374-82. PubMed ID: 26970889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional delamination strength in the human aorta underlies the anatomical localization of the dissection channel.
    Sokolis DP; Papadodima SA
    J Biomech; 2022 Aug; 141():111174. PubMed ID: 35701262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of impaired vasa vasorum flow on the structure and mechanics of the thoracic aorta: implications for the pathogenesis of aortic dissection.
    Angouras D; Sokolis DP; Dosios T; Kostomitsopoulos N; Boudoulas H; Skalkeas G; Karayannacos PE
    Eur J Cardiothorac Surg; 2000 Apr; 17(4):468-73. PubMed ID: 10773572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of regional/layer differences in failure properties and thickness as important biomechanical factors responsible for the initiation of aortic dissections.
    Manopoulos C; Karathanasis I; Kouerinis I; Angouras DC; Lazaris A; Tsangaris S; Sokolis DP
    J Biomech; 2018 Oct; 80():102-110. PubMed ID: 30195853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media.
    Tsamis A; Phillippi JA; Koch RG; Pasta S; D'Amore A; Watkins SC; Wagner WR; Gleason TG; Vorp DA
    J Biomech; 2013 Nov; 46(16):2787-94. PubMed ID: 24075403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of dissection on the mechanical properties of human ascending aorta and human ascending aorta aneurysm.
    Kozuń M; Płonek T; Jasiński M; Filipiak J
    Acta Bioeng Biomech; 2019; 21(2):127-134. PubMed ID: 31741471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathologic variants of thoracic aortic dissections. Penetrating atherosclerotic ulcers and intramural hematomas.
    Coady MA; Rizzo JA; Elefteriades JA
    Cardiol Clin; 1999 Nov; 17(4):637-57. PubMed ID: 10589337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta.
    Myneni M; Rao A; Jiang M; Moreno MR; Rajagopal KR; Benjamin CC
    Ann Biomed Eng; 2020 Jun; 48(6):1751-1767. PubMed ID: 32152801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Angiotensin II infusion into ApoE-/- mice: a model for aortic dissection rather than abdominal aortic aneurysm?
    Trachet B; Aslanidou L; Piersigilli A; Fraga-Silva RA; Sordet-Dessimoz J; Villanueva-Perez P; Stampanoni MFM; Stergiopulos N; Segers P
    Cardiovasc Res; 2017 Aug; 113(10):1230-1242. PubMed ID: 28898997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endovascular creation of aortic dissection in a swine model with technical considerations.
    Okuno T; Yamaguchi M; Okada T; Takahashi T; Sakamoto N; Ueshima E; Sugimura K; Sugimoto K
    J Vasc Surg; 2012 May; 55(5):1410-8. PubMed ID: 22226563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructural and mechanical characterization of the layers of human descending thoracic aortas.
    Amabili M; Asgari M; Breslavsky ID; Franchini G; Giovanniello F; Holzapfel GA
    Acta Biomater; 2021 Oct; 134():401-421. PubMed ID: 34303867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of β-aminopropionitrile-induced aortic dissection model in rats by different administration and dosage.
    Li JS; Li HY; Wang L; Zhang L; Jing ZP
    Vascular; 2013 Oct; 21(5):287-92. PubMed ID: 23518849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of development of atherosclerosis on delamination resistance of the thoracic aortic wall.
    Kozuń M; Kobielarz M; Chwiłkowska A; Pezowicz C
    J Mech Behav Biomed Mater; 2018 Mar; 79():292-300. PubMed ID: 29353772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.