BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36057067)

  • 1. Theoretical and experimental studies on photocatalytic removal of methylene blue (MetB) from aqueous solution using oyster shell synthesized CaO nanoparticles (CaONP-O).
    Eddy NO; Ukpe RA; Ameh P; Ogbodo R; Garg R; Garg R
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):81417-81432. PubMed ID: 36057067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell-based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution.
    Eddy NO; Odiongenyi AO; Garg R; Ukpe RA; Garg R; Nemr AE; Ngwu CM; Okop IJ
    Environ Sci Pollut Res Int; 2023 May; 30(23):64036-64057. PubMed ID: 37059957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocatalytic Degradation of Methylene Blue Dye Using Silica Oxide Nanoparticles as a Catalyst.
    Aly HF; Abd-Elhamid AI
    Water Environ Res; 2018 Sep; 90(9):807-817. PubMed ID: 30208997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast photocatalytic degradation of methylene blue dye using a low-power diode laser.
    Liu X; Yang Y; Shi X; Li K
    J Hazard Mater; 2015; 283():267-75. PubMed ID: 25285998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nigella sativa seed based nanocomposite-MnO
    Siddiqui SI; Manzoor O; Mohsin M; Chaudhry SA
    Environ Res; 2019 Apr; 171():328-340. PubMed ID: 30711734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photocatalytic degradation of methylene blue dye by zinc oxide nanoparticles obtained from precipitation and sol-gel methods.
    Balcha A; Yadav OP; Dey T
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25485-25493. PubMed ID: 27704379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic degradation of methylene blue dye from aqueous solution using silver ion-doped TiO₂ and its application to the degradation of real textile wastewater.
    Sahoo C; Gupta AK; Sasidharan Pillai IM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(10):1428-38. PubMed ID: 22571531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.
    Abou-Gamra ZM; Ahmed MA
    J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorptive removal of methylene blue dye from aqueous streams using photocatalytic CuBTC/ZnO chitosan composites.
    Dindorkar SS; Patel RV; Yadav A
    Water Sci Technol; 2022 May; 85(9):2748-2760. PubMed ID: 35576266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of cress seed musilage magnetic nanocomposites for removal of methylene blue dye from water.
    Allafchian A; Mousavi ZS; Hosseini SS
    Int J Biol Macromol; 2019 Sep; 136():199-208. PubMed ID: 31201917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of carboxymethyl starch with 2-carboxyethyl acrylate: A new sorbent for the wastewater remediation of methylene blue.
    Ullah N; Haq F; Farid A; Kiran M; Al Othman ZA; Aljuwayid AM; Habila MA; Bokhari A; Rajendran S; Khoo KS
    Environ Res; 2023 Feb; 219():115091. PubMed ID: 36529323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization and mechanisms of methylene blue removal by foxtail millet shell from aqueous water and reuse in biosorption of Pb(II), Cd(II), Cu(II), and Zn(II) for secondary times.
    He P; Liu J; Ren ZR; Zhang Y; Gao Y; Chen ZQ; Liu X
    Int J Phytoremediation; 2022; 24(4):350-363. PubMed ID: 34410866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron Molybdate Fe
    Mohmoud A; Rakass S; Oudghiri Hassani H; Kooli F; Abboudi M; Ben Aoun S
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33153124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave enhanced sorption of methylene blue dye onto bio-synthesized iron oxide nanoparticles: kinetics, isotherms, and thermodynamics studies.
    Shalaby SM; Madkour FF; El-Kassas HY; Mohamed AA; Elgarahy AM
    Int J Phytoremediation; 2022; 24(9):902-918. PubMed ID: 34618649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Linked Ionic Liquid Polymer for the Effective Removal of Ionic Dyes from Aqueous Systems: Investigation of Kinetics and Adsorption Isotherms.
    Reddy AVB; Rafiq R; Ahmad A; Maulud AS; Moniruzzaman M
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-pot synthesis of metal oxide-clay composite for the evaluation of dye removal studies: Taguchi optimization of parameters and environmental toxicity studies.
    K AK; Shobham ; Panwar J; Gupta S
    Environ Sci Pollut Res Int; 2023 May; 30(22):61541-61561. PubMed ID: 36280640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial neural network-genetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle.
    Ghaedi M; Zeinali N; Ghaedi AM; Teimuori M; Tashkhourian J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 May; 125():264-77. PubMed ID: 24556135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent.
    Sharma S; Hasan A; Kumar N; Pandey LM
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21605-21615. PubMed ID: 29785597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fe
    Hingrajiya RD; Patel MP
    Int J Biol Macromol; 2023 Jul; 244():125251. PubMed ID: 37307972
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nigella sativa seed based nanohybrid composite-Fe
    Siddiqui SI; Zohra F; Chaudhry SA
    Environ Res; 2019 Nov; 178():108667. PubMed ID: 31454728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.