These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

758 related articles for article (PubMed ID: 36057226)

  • 1. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images.
    Zhang Y; Chen S; Wang Y; Li J; Xu K; Chen J; Zhao J
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):8877-8888. PubMed ID: 37150803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting microsatellite instability in colorectal cancer using Transformer-based colonoscopy image classification and retrieval.
    Lo CM; Jiang JK; Lin CC
    PLoS One; 2024; 19(1):e0292277. PubMed ID: 38271352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detecting immunotherapy-sensitive subtype in gastric cancer using histologic image-based deep learning.
    Hinata M; Ushiku T
    Sci Rep; 2021 Nov; 11(1):22636. PubMed ID: 34811485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a radiomics-based nomogram for the preoperative prediction of microsatellite instability in colorectal cancer.
    Ying M; Pan J; Lu G; Zhou S; Fu J; Wang Q; Wang L; Hu B; Wei Y; Shen J
    BMC Cancer; 2022 May; 22(1):524. PubMed ID: 35534797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attention-based multiple instance learning with self-supervision to predict microsatellite instability in colorectal cancer from histology whole-slide images.
    Leiby JS; Hao J; Kang GH; Park JW; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3068-3071. PubMed ID: 36085965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepSMILE: Contrastive self-supervised pre-training benefits MSI and HRD classification directly from H&E whole-slide images in colorectal and breast cancer.
    Schirris Y; Gavves E; Nederlof I; Horlings HM; Teuwen J
    Med Image Anal; 2022 Jul; 79():102464. PubMed ID: 35596966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of MRI-based deep learning models for prediction of microsatellite instability in rectal cancer.
    Zhang W; Yin H; Huang Z; Zhao J; Zheng H; He D; Li M; Tan W; Tian S; Song B
    Cancer Med; 2021 Jun; 10(12):4164-4173. PubMed ID: 33963688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-invasive prediction of microsatellite instability in colorectal cancer by a genetic algorithm-enhanced artificial neural network-based CT radiomics signature.
    Chen X; He L; Li Q; Liu L; Li S; Zhang Y; Liu Z; Huang Y; Mao Y; Chen X
    Eur Radiol; 2023 Jan; 33(1):11-22. PubMed ID: 35771245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting colorectal cancer microsatellite instability with a self-attention-enabled convolutional neural network.
    Chang X; Wang J; Zhang G; Yang M; Xi Y; Xi C; Chen G; Nie X; Meng B; Quan X
    Cell Rep Med; 2023 Feb; 4(2):100914. PubMed ID: 36720223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of a deep learning-based microsatellite instability predictor from prostate cancer whole-slide images.
    Hu Q; Rizvi AA; Schau G; Ingale K; Muller Y; Baits R; Pretzer S; BenTaieb A; Gordhamer A; Nussenzveig R; Cole A; Leavitt MO; Jones RD; Joshi RP; Beaubier N; Stumpe MC; Nagpal K
    NPJ Precis Oncol; 2024 Apr; 8(1):88. PubMed ID: 38594360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of clinically actionable genetic alterations from colorectal cancer histopathology images using deep learning.
    Jang HJ; Lee A; Kang J; Song IH; Lee SH
    World J Gastroenterol; 2020 Oct; 26(40):6207-6223. PubMed ID: 33177794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning image analysis quantifies tumor heterogeneity and identifies microsatellite instability in colon cancer.
    Rubinstein JC; Foroughi Pour A; Zhou J; Sheridan TB; White BS; Chuang JH
    J Surg Oncol; 2023 Mar; 127(3):426-433. PubMed ID: 36251352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. xDEEP-MSI: Explainable Bias-Rejecting Microsatellite Instability Deep Learning System in Colorectal Cancer.
    Bustos A; Payá A; Torrubia A; Jover R; Llor X; Bessa X; Castells A; Carracedo Á; Alenda C
    Biomolecules; 2021 Nov; 11(12):. PubMed ID: 34944430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.