These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 3605742)
1. An in vivo study of halothane uptake and elimination in the rat brain with fluorine nuclear magnetic resonance spectroscopy. Litt L; González-Méndez R; James TL; Sessler DI; Mills P; Chew W; Moseley M; Pereira B; Severinghaus JW; Hamilton WK Anesthesiology; 1987 Aug; 67(2):161-8. PubMed ID: 3605742 [TBL] [Abstract][Full Text] [Related]
2. Determination of halothane distribution in the rat head using 19F NMR technique. Wyrwicz AM; Conboy CB Magn Reson Med; 1989 Feb; 9(2):219-28. PubMed ID: 2716506 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive observations of fluorinated anesthetics in rabbit brain by fluorine-19 nuclear magnetic resonance. Wyrwicz AM; Pszenny MH; Schofield JC; Tillman PC; Gordon RE; Martin PA Science; 1983 Oct; 222(4622):428-30. PubMed ID: 6623084 [TBL] [Abstract][Full Text] [Related]
4. Fluorine-19 nuclear magnetic resonance imaging and spectroscopy of sevoflurane uptake, distribution, and elimination in rat brain. Xu Y; Tang P; Zhang W; Firestone L; Winter PM Anesthesiology; 1995 Oct; 83(4):766-74. PubMed ID: 7574056 [TBL] [Abstract][Full Text] [Related]
5. An in vivo 19F nuclear magnetic resonance study of isoflurane elimination from the rabbit brain. Mills P; Sessler DI; Moseley M; Chew W; Pereira B; James TL; Litt L Anesthesiology; 1987 Aug; 67(2):169-73. PubMed ID: 3605743 [TBL] [Abstract][Full Text] [Related]
6. Cerebral uptake and elimination of desflurane, isoflurane, and halothane from rabbit brain: an in vivo NMR study. Lockhart SH; Cohen Y; Yasuda N; Freire B; Taheri S; Litt L; Eger EI Anesthesiology; 1991 Mar; 74(3):575-80. PubMed ID: 2001037 [TBL] [Abstract][Full Text] [Related]
7. [31P-NMR analysis of high energy phosphorous compounds (ATP and phosphocreatine) in the living rat brain--effects of halothane anesthesia and a hypoxic condition]. Yuasa T; Miyatake T; Kuwabara T; Umeda M; Eguchi K No To Shinkei; 1983 Nov; 35(11):1089-95. PubMed ID: 6661335 [TBL] [Abstract][Full Text] [Related]
8. In vivo 19F-NMR study of halothane distribution in brain. Wyrwicz AM; Conboy CB; Nichols BG; Ryback KR; Eisele P Biochim Biophys Acta; 1987 Jul; 929(3):271-7. PubMed ID: 3607085 [TBL] [Abstract][Full Text] [Related]
9. In vivo 19F-NMR study of isoflurane elimination from brain. Wyrwicz AM; Conboy CB; Ryback KR; Nichols BG; Eisele P Biochim Biophys Acta; 1987 Jan; 927(1):86-91. PubMed ID: 3790622 [TBL] [Abstract][Full Text] [Related]
10. Cerebral intracellular ADP concentrations during hypercarbia: an in vivo 31P nuclear magnetic resonance study in rats. Litt L; González-Méndez R; Severinghaus JW; Hamilton WK; Rampil IJ; Shuleshko J; Murphy-Boesch J; James TL J Cereb Blood Flow Metab; 1986 Jun; 6(3):389-92. PubMed ID: 3711164 [TBL] [Abstract][Full Text] [Related]
11. Equilibration of halothane with brain tissue in vitro: comparison to brain concentrations during anesthesia. Bazil CW; Raux ME; Yudell S; Minneman KP J Neurochem; 1987 Sep; 49(3):952-8. PubMed ID: 3612133 [TBL] [Abstract][Full Text] [Related]
12. Transient inhibitory effect of isoflurane upon oxidative halothane metabolism. Fiserova-Bergerova V; Dolan DF Anesth Analg; 1985 Dec; 64(12):1171-7. PubMed ID: 4061898 [TBL] [Abstract][Full Text] [Related]
13. Non-invasive determination of cerebral blood flow changes by 19F NMR spectroscopy. Rudin M; Sauter A NMR Biomed; 1989 Sep; 2(3):98-103. PubMed ID: 2518156 [TBL] [Abstract][Full Text] [Related]
14. Absence of abundant binding sites for anesthetics in rabbit brain: an in vivo NMR study. Lockhart SH; Cohen Y; Yasuda N; Kim F; Litt L; Eger EI; Chang LH; James T Anesthesiology; 1990 Sep; 73(3):455-60. PubMed ID: 2393130 [TBL] [Abstract][Full Text] [Related]
15. In vivo fluorine-19 magnetic resonance spectroscopy of cerebral halothane in postoperative patients: preliminary results. Menon DK; Lockwood GG; Peden CJ; Cox IJ; Sargentoni J; Bell JD; Coutts GA; Whitwam JG Magn Reson Med; 1993 Dec; 30(6):680-4. PubMed ID: 8139449 [TBL] [Abstract][Full Text] [Related]
16. Correlation between the anaesthetic effect of halothane and saturable binding in brain. Evers AS; Berkowitz BA; d'Avignon DA Nature; 1987 Jul 9-15; 328(6126):157-60. PubMed ID: 3600792 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the cerebral distribution of general anesthetics in vivo by two-dimensional 19F chemical shift imaging. Venkatasubramanian PN; Shen YJ; Wyrwicz AM Magn Reson Med; 1996 Apr; 35(4):626-30. PubMed ID: 8992217 [TBL] [Abstract][Full Text] [Related]
18. 19F-nuclear magnetic resonance spectroscopy. Its use in defining molecular sites of anesthetic action. Evers AS; Dubois BW Ann N Y Acad Sci; 1991; 625():725-32. PubMed ID: 2058920 [No Abstract] [Full Text] [Related]
19. In vivo 19F-NMR spectroscopic study of halothane uptake in rabbit brain. Venkatasubramanian PN; Shen YJ; Wyrwicz AM Biochim Biophys Acta; 1995 Oct; 1245(2):262-8. PubMed ID: 7492587 [TBL] [Abstract][Full Text] [Related]
20. The fluorinated anesthetic halothane as a potential NMR biologic probe. Burt CT; Moore RR; Roberts MF; Brady TJ Biochim Biophys Acta; 1984 Dec; 805(4):375-81. PubMed ID: 6509092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]