These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36057750)

  • 1. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics.
    Toaquiza Tubon JD; Moreno-Flores O; Sree VD; Tepole AB
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1-16. PubMed ID: 36057750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage and Fracture Mechanics of Porcine Subcutaneous Tissue Under Tensile Loading.
    Sree VD; Toaquiza-Tubon JD; Payne J; Solorio L; Tepole AB
    Ann Biomed Eng; 2023 Sep; 51(9):2056-2069. PubMed ID: 37233856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuum model and simulations for large deformation of anisotropic fiber-matrix composites for cardiac tissue engineering.
    Bai Y; Kaiser NJ; Coulombe KLK; Srivastava V
    J Mech Behav Biomed Mater; 2021 Sep; 121():104627. PubMed ID: 34130078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of planar soft tissues using a structural constitutive model: Finite element implementation and validation.
    Fan R; Sacks MS
    J Biomech; 2014 Jun; 47(9):2043-54. PubMed ID: 24746842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biaxial mechanics of thermally denaturing skin - Part 2: Modeling.
    Rausch M; Meador WD; Toaquiza-Tubon J; Moreno-Flores O; Tepole AB
    Acta Biomater; 2022 Mar; 140():421-433. PubMed ID: 34856415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic generation of user material subroutines for biomechanical growth analysis.
    Young JM; Yao J; Ramasubramanian A; Taber LA; Perucchio R
    J Biomech Eng; 2010 Oct; 132(10):104505. PubMed ID: 20887023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How to implement user-defined fiber-reinforced hyperelastic materials in finite element software.
    Fehervary H; Maes L; Vastmans J; Kloosterman G; Famaey N
    J Mech Behav Biomed Mater; 2020 Oct; 110():103737. PubMed ID: 32771879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peripapillary and posterior scleral mechanics--part I: development of an anisotropic hyperelastic constitutive model.
    Girard MJ; Downs JC; Burgoyne CF; Suh JK
    J Biomech Eng; 2009 May; 131(5):051011. PubMed ID: 19388781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues.
    Sun W; Sacks MS
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):190-9. PubMed ID: 16075264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.
    Ma S; Scheider I; Bargmann S
    J Mech Behav Biomed Mater; 2016 Sep; 62():515-533. PubMed ID: 27294283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporating fiber recruitment in hyperelastic modeling of vascular tissues by means of kinematic average.
    Lu J; He X
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1833-1850. PubMed ID: 34173928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mesostructurally-based anisotropic continuum model for biological soft tissues--decoupled invariant formulation.
    Limbert G
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1637-57. PubMed ID: 22098866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven Modeling of the Mechanical Behavior of Anisotropic Soft Biological Tissue.
    Tac V; Sree VD; Rausch MK; Tepole AB
    Eng Comput; 2022 Oct; 38(5):4167-4182. PubMed ID: 38031587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical model of the human cornea: considering shear stiffness and regional variation of collagen anisotropy and density.
    Whitford C; Studer H; Boote C; Meek KM; Elsheikh A
    J Mech Behav Biomed Mater; 2015 Feb; 42():76-87. PubMed ID: 25460928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rate dependent anisotropic constitutive modeling of brain tissue undergoing large deformation.
    Haldar K; Pal C
    J Mech Behav Biomed Mater; 2018 May; 81():178-194. PubMed ID: 29529589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The non-affine fiber network solver: A multiscale fiber network material model for finite-element analysis.
    Mahutga RR; Barocas VH; Alford PW
    J Mech Behav Biomed Mater; 2023 Aug; 144():105967. PubMed ID: 37329673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the Three-Dimensional Mechanical Behavior of Human Breast Tissue.
    Goodbrake C; Li DS; Aghakhani H; Contreras A; Reece GP; Markey MK; Sacks MS
    Ann Biomed Eng; 2022 May; 50(5):601-613. PubMed ID: 35316441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.