BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 36057839)

  • 1. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter.
    Neef NE; Angstadt M; Koenraads SPC; Chang SE
    Cereb Cortex; 2023 Mar; 33(7):4085-4100. PubMed ID: 36057839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.
    Neef NE; Anwander A; Bütfering C; Schmidt-Samoa C; Friederici AD; Paulus W; Sommer M
    Brain; 2018 Jan; 141(1):191-204. PubMed ID: 29228195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of left inferior frontal-premotor structural and functional connectivity deficits in adults who stutter.
    Chang SE; Horwitz B; Ostuni J; Reynolds R; Ludlow CL
    Cereb Cortex; 2011 Nov; 21(11):2507-18. PubMed ID: 21471556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of trait and state in stuttering.
    Connally EL; Ward D; Pliatsikas C; Finnegan S; Jenkinson M; Boyles R; Watkins KE
    Hum Brain Mapp; 2018 Aug; 39(8):3109-3126. PubMed ID: 29624772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atypical development of Broca's area in a large family with inherited stuttering.
    Thompson-Lake DGY; Scerri TS; Block S; Turner SJ; Reilly S; Kefalianos E; Bonthrone AF; Helbig I; Bahlo M; Scheffer IE; Hildebrand MS; Liégeois FJ; Morgan AT
    Brain; 2022 Apr; 145(3):1177-1188. PubMed ID: 35296891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional abnormalities of the motor system in developmental stuttering.
    Watkins KE; Smith SM; Davis S; Howell P
    Brain; 2008 Jan; 131(Pt 1):50-9. PubMed ID: 17928317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural oscillatory activity and connectivity in children who stutter during a non-speech motor task.
    Caruso VC; Wray AH; Lescht E; Chang SE
    J Neurodev Disord; 2023 Nov; 15(1):40. PubMed ID: 37964200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Basal Ganglia and Its Neuronal Connections in the Development of Stuttering: A Review Article.
    G D; B H S; Gajbe U; Singh BR; Sawal A; Balwir T
    Cureus; 2022 Aug; 14(8):e28653. PubMed ID: 36196326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examining resting state functional connectivity and frequency power analysis in adults who stutter compared to adults who do not stutter.
    Valaei A; Bamdad S; Golfam A; Golmohammadi G; Ameri H; Raoufy MR
    Front Hum Neurosci; 2024; 18():1338966. PubMed ID: 38375364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.
    Kell CA; Neumann K; Behrens M; von Gudenberg AW; Giraud AL
    J Fluency Disord; 2018 Mar; 55():135-144. PubMed ID: 28216127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered functional connectivity in persistent developmental stuttering.
    Yang Y; Jia F; Siok WT; Tan LH
    Sci Rep; 2016 Jan; 6():19128. PubMed ID: 26743821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.
    Metzger FL; Auer T; Helms G; Paulus W; Frahm J; Sommer M; Neef NE
    Brain Struct Funct; 2018 Jan; 223(1):165-182. PubMed ID: 28741037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. White matter tractography of the neural network for speech-motor control in children who stutter.
    Misaghi E; Zhang Z; Gracco VL; De Nil LF; Beal DS
    Neurosci Lett; 2018 Mar; 668():37-42. PubMed ID: 29309858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter.
    Garnett EO; Chow HM; Nieto-Castañón A; Tourville JA; Guenther FH; Chang SE
    Brain; 2018 Sep; 141(9):2670-2684. PubMed ID: 30084910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. rsfMRI based evidence for functional connectivity alterations in adults with developmental stuttering.
    Shojaeilangari S; Radman N; Taghizadeh ME; Soltanian-Zadeh H
    Heliyon; 2021 Sep; 7(9):e07855. PubMed ID: 34504967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of anxiety in stuttering: Evidence from functional connectivity.
    Yang Y; Jia F; Siok WT; Tan LH
    Neuroscience; 2017 Mar; 346():216-225. PubMed ID: 27919696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.