BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36057915)

  • 21. Description of two morphotypes of Peptostreptococcus micros.
    van Dalen PJ; van Steenbergen TJ; Cowan MM; Busscher HJ; de Graaff J
    Int J Syst Bacteriol; 1993 Oct; 43(4):787-93. PubMed ID: 8240959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcription Factors Efg1 and Bcr1 Regulate Biofilm Formation and Virulence during Candida albicans-Associated Denture Stomatitis.
    Yano J; Yu A; Fidel PL; Noverr MC
    PLoS One; 2016; 11(7):e0159692. PubMed ID: 27453977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bcr1 plays a central role in the regulation of opaque cell filamentation in Candida albicans.
    Guan G; Xie J; Tao L; Nobile CJ; Sun Y; Cao C; Tong Y; Huang G
    Mol Microbiol; 2013 Aug; 89(4):732-50. PubMed ID: 23808664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of filamentation in the human fungal pathogen Candida tropicalis.
    Zhang Q; Tao L; Guan G; Yue H; Liang W; Cao C; Dai Y; Huang G
    Mol Microbiol; 2016 Feb; 99(3):528-45. PubMed ID: 26466925
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General factors important for the formation of structured biofilm-like yeast colonies.
    St'ovíček V; Váchová L; Kuthan M; Palková Z
    Fungal Genet Biol; 2010 Dec; 47(12):1012-22. PubMed ID: 20728557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Candida albicans white and opaque cells undergo distinct programs of filamentous growth.
    Si H; Hernday AD; Hirakawa MP; Johnson AD; Bennett RJ
    PLoS Pathog; 2013 Mar; 9(3):e1003210. PubMed ID: 23505370
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator.
    Sonneborn A; Tebarth B; Ernst JF
    Infect Immun; 1999 Sep; 67(9):4655-60. PubMed ID: 10456912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phenotypic switching of Candida guilliermondii is associated with pseudohyphae formation and antifungal resistance.
    Lastauskienė E; Čeputytė J; Girkontaitė I; Zinkevičienė A
    Mycopathologia; 2015 Apr; 179(3-4):205-11. PubMed ID: 25481846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The general transcriptional repressor Tup1 governs filamentous development in Candida tropicalis.
    Gong J; Huang Q; Liang W; Wei Y; Huang G
    Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):463-470. PubMed ID: 30968937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Candida tropicalis affects the virulence profile of Candida albicans: an in vitro and in vivo study.
    de Barros PP; Rossoni RD; Freire F; Ribeiro FC; Lopes LADC; Junqueira JC; Jorge AOC
    Pathog Dis; 2018 Mar; 76(2):. PubMed ID: 29617858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of EFG1 promotes Candida albicans opaque formation responding to pH via Rim101.
    Nie X; Liu X; Wang H; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):735-44. PubMed ID: 20870932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Significance of hyphae formation in virulence of Candida tropicalis and transcriptomic analysis of hyphal cells.
    Jiang C; Li Z; Zhang L; Tian Y; Dong D; Peng Y
    Microbiol Res; 2016 Nov; 192():65-72. PubMed ID: 27664724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-acetylglucosamine-mediated morphological transition in Candida albicans and Candida tropicalis.
    Lew SQ; Lin CH
    Curr Genet; 2021 Apr; 67(2):249-254. PubMed ID: 33388851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rim101-upregulated Fets contribute to dark pigment formation in gray cells of Candida albicans.
    Dai B; Xu Y; Wu H; Chen J
    Acta Biochim Biophys Sin (Shanghai); 2021 Dec; 53(12):1723-1730. PubMed ID: 34599586
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The zinc-finger transcription factor, Ofi1, regulates white-opaque switching and filamentation in the yeast Candida albicans.
    Du H; Li X; Huang G; Kang Y; Zhu L
    Acta Biochim Biophys Sin (Shanghai); 2015 May; 47(5):335-41. PubMed ID: 25757952
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic Switching and Filamentation in Candida haemulonii, an Emerging Opportunistic Pathogen of Humans.
    Deng Y; Li S; Bing J; Liao W; Tao L
    Microbiol Spectr; 2021 Dec; 9(3):e0077921. PubMed ID: 34878301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of TUP1 in switching, phase maintenance, and phase-specific gene expression in Candida albicans.
    Zhao R; Lockhart SR; Daniels K; Soll DR
    Eukaryot Cell; 2002 Jun; 1(3):353-65. PubMed ID: 12455984
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic and genetic features of a novel clinically isolated rough morphotype
    Tian S; Bing J; Chu Y; Li H; Wang Q; Cheng S; Chen J; Shang H
    Front Microbiol; 2023; 14():1174878. PubMed ID: 37350781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro interaction of Candida tropicalis biofilm formed on catheter with human cells.
    Capote-Bonato F; Sakita KM; de Oliveira AG; Bonfim-Mendonça PS; Crivellenti LZ; Negri M; Estivalet Svidzinski TI
    Microb Pathog; 2018 Dec; 125():177-182. PubMed ID: 30227228
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wor1-regulated ferroxidases contribute to pigment formation in opaque cells of Candida albicans.
    Dai B; Xu Y; Gao N; Chen J
    FEBS Open Bio; 2021 Mar; 11(3):598-621. PubMed ID: 33350590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.