These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36058139)

  • 1. Intensification of Red-G dye degradation used in the dyeing of alpaca wool by advanced oxidation processes assisted by hydrodynamic cavitation.
    Flores Alarcón MAD; Arenas Jarro RY; Ahmed MA; García Bustos KA; Pacheco Tanaka DA; Terán Hilares R
    Ultrason Sonochem; 2022 Sep; 89():106144. PubMed ID: 36058139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of real industrial-grade dye solutions and printing ink wastewater using a novel pilot-scale hydrodynamic cavitation reactor.
    Zampeta C; Bertaki K; Triantaphyllidou IE; Frontistis Z; Vayenas DV
    J Environ Manage; 2021 Nov; 297():113301. PubMed ID: 34280856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of imidacloprid using combined advanced oxidation processes based on hydrodynamic cavitation.
    Patil PN; Bote SD; Gogate PR
    Ultrason Sonochem; 2014 Sep; 21(5):1770-7. PubMed ID: 24631443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of 2,4-dinitrophenol using a combination of hydrodynamic cavitation, chemical and advanced oxidation processes.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2013 Sep; 20(5):1226-35. PubMed ID: 23538121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2014 Jan; 21(1):1-14. PubMed ID: 23968578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of acid red 73 wastewater by hydrodynamic cavitation combined with ozone and its mechanism.
    Wang J; Wang J; Yuan R; Liu J; Yin Z; He T; Wang M; Ma F; Zhou B; Chen H
    Environ Res; 2022 Jul; 210():112954. PubMed ID: 35183517
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater.
    Bilici Z; Saleh M; Yabalak E; Khataee A; Dizge N
    Water Sci Technol; 2022 Jan; 85(1):77-89. PubMed ID: 35050867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The removal of Rhodamine B by H
    Wang K; Jin RY; Qiao YN; He ZD; Wang Y; Wang XJ
    Water Sci Technol; 2019 Oct; 80(8):1571-1580. PubMed ID: 31961819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.
    Gogate PR; Patil PN
    Ultrason Sonochem; 2015 Jul; 25():60-9. PubMed ID: 25190647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale hybrid system combining hydrodynamic cavitation and sedimentation for the decolorization of industrial inks and printing ink wastewater.
    Zampeta C; Bertaki K; Triantaphyllidou IE; Frontistis Z; Koutsoukos PG; Vayenas DV
    J Environ Manage; 2022 Jan; 302(Pt B):114108. PubMed ID: 34784569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
    Gore MM; Saharan VK; Pinjari DV; Chavan PV; Pandit AB
    Ultrason Sonochem; 2014 May; 21(3):1075-82. PubMed ID: 24360991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment of fish processing industry wastewater using hydrodynamic cavitational reactor with biodegradability improvement.
    Dhanke P; Wagh S; Patil A
    Water Sci Technol; 2019 Dec; 80(12):2310-2319. PubMed ID: 32245922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of hydrochar bio-based catalyst for fenton process in dye-containing wastewater treatment.
    Eskikaya O; Isik Z; Arslantas C; Yabalak E; Balakrishnan D; Dizge N; Rao KS
    Environ Res; 2023 Jan; 216(Pt 1):114357. PubMed ID: 36122703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater.
    Zupanc M; Kosjek T; Petkovšek M; Dular M; Kompare B; Širok B; Stražar M; Heath E
    Ultrason Sonochem; 2014 May; 21(3):1213-21. PubMed ID: 24286658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of pefloxacin by hybrid hydrodynamic cavitation with H
    Wang B; Jiao H; Su H; Wang T
    Chemosphere; 2022 Sep; 303(Pt 3):135299. PubMed ID: 35691401
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of methyl orange using hydrodynamic Cavitation, H
    Merdoud R; Aoudjit F; Mouni L; Ranade VV
    Ultrason Sonochem; 2024 Feb; 103():106772. PubMed ID: 38310738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of Procion Brilliant Purple H-3R using ultrasound coupled with advanced oxidation processes.
    Momin RF; Gogate PR
    J Environ Manage; 2024 Jan; 350():119642. PubMed ID: 38016239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.