BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

45 related articles for article (PubMed ID: 36058258)

  • 1. Analysis of Antimicrobial Activity of Monocytic Myeloid-Derived Suppressor Cells in Infection with Mycobacterium tuberculosis and Human Immunodeficiency Virus.
    Garg A
    Methods Mol Biol; 2021; 2236():115-127. PubMed ID: 33237545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral Flow Cytometry Methods and Pipelines for Comprehensive Immunoprofiling of Human Peripheral Blood and Bone Marrow.
    Spasic M; Ogayo ER; Parsons AM; Mittendorf EA; van Galen P; McAllister SS
    Cancer Res Commun; 2024 Mar; 4(3):895-910. PubMed ID: 38466569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a customizable mouse backbone spectral flow cytometry panel to delineate immune cell populations in normal and tumor tissues.
    Longhini ALF; Fernández-Maestre I; Kennedy MC; Wereski MG; Mowla S; Xiao W; Lowe SW; Levine RL; Gardner R
    Front Immunol; 2024; 15():1374943. PubMed ID: 38605953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunophenotyping, Part I: Instrument Calibration and Reagent Qualification for Immunophenotyping Analysis of Human Peripheral Blood Mononuclear Cell Cultures.
    Newton HS; Zhang J; Dobrovolskaia MA
    Methods Mol Biol; 2024; 2789():245-267. PubMed ID: 38507009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunophenotyping, Part II: Analysis of Nanoparticle Effects on the Composition and Activation Status of Human Peripheral Blood Mononuclear Cells.
    Newton HS; Zhang J; Dobrovolskaia MA
    Methods Mol Biol; 2024; 2789():269-291. PubMed ID: 38507010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protocol to characterize the melanoma tumor immune microenvironment in mice from single cell to flow cytometry analysis.
    Sisó P; de la Rosa I; Ríos C; Panosa A; Verdaguer J; Martí R; Macià A
    STAR Protoc; 2023 Dec; 4(4):102690. PubMed ID: 37979181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunophenotyping with (phospho)protein profiling and fluorescent cell barcoding for single-cell signaling analysis and biomarker discovery.
    Hermansen JU; Yin Y; Rein ID; Skånland SS
    NPJ Precis Oncol; 2024 May; 8(1):107. PubMed ID: 38769096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction to: High-Dimensional Immunophenotyping with 37-Color Panel Using Full-Spectrum Cytometry.
    Fernandez MA; Alzayat H; Jaimes MC; Kharraz Y; Requena G; Mendez P
    Methods Mol Biol; 2022; 2386():C1-C3. PubMed ID: 35258852
    [No Abstract]   [Full Text] [Related]  

  • 9. Clinical Applications of Flow Cytometry in Cancer Immunotherapies: From Diagnosis to Treatments.
    Mishra HK
    Methods Mol Biol; 2023; 2593():93-112. PubMed ID: 36513926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase II study of nivolumab in patients with genetic alterations in DNA damage repair and response who progressed after standard treatment for metastatic solid cancers (KM-06).
    Kim JW; Lee HJ; Lee JY; Park SR; Kim YJ; Hwang IG; Kyun Bae W; Byun JH; Kim JS; Kang EJ; Lee J; Shin SJ; Chang WJ; Kim EO; Sa JK; Park KH
    J Immunother Cancer; 2024 Mar; 12(3):. PubMed ID: 38485184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic Analysis of Circulating Myeloid Derived Suppressor Cells and Their Subpopulations in Egyptian Females with Breast Cancer: A Single-Centre Case-Control Study.
    Saed SM; Abbas S; El Ansary MS; Abdelfattah W; Maurice KK; Mohamed ME; Tawfik Koptan DM
    Asian Pac J Cancer Prev; 2024 Jan; 25(1):257-263. PubMed ID: 38285792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulating biomarkers for diagnosis and therapeutic monitoring in bone metastasis.
    Song MK; Park SI; Cho SW
    J Bone Miner Metab; 2023 May; 41(3):337-344. PubMed ID: 36729305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunophenotyping of Circulating Myeloid-Derived Suppressor Cells (MDSC) in the Peripheral Blood of Cancer Patients.
    Bruderek K; Schirrmann R; Brandau S
    Methods Mol Biol; 2021; 2236():1-7. PubMed ID: 33237535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization and quantification of
    Hoffmann SHL; Reck DI; Maurer A; Fehrenbacher B; Sceneay JE; Poxleitner M; Öz HH; Ehrlichmann W; Reischl G; Fuchs K; Schaller M; Hartl D; Kneilling M; Möller A; Pichler BJ; Griessinger CM
    Theranostics; 2019; 9(20):5869-5885. PubMed ID: 31534525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new procedure to analyze polymorphonuclear myeloid derived suppressor cells in cryopreserved samples cells by flow cytometry.
    Sacchi A; Tumino N; Grassi G; Casetti R; Cimini E; Bordoni V; Ammassari A; Antinori A; Agrati C
    PLoS One; 2018; 13(8):e0202920. PubMed ID: 30161175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Development and Homing of Myeloid-Derived Suppressor Cells: From a Two-Stage Model to a Multistep Narrative.
    Karin N
    Front Immunol; 2020; 11():557586. PubMed ID: 33193327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity of myeloid-derived suppressor cells in cancer.
    Tcyganov E; Mastio J; Chen E; Gabrilovich DI
    Curr Opin Immunol; 2018 Apr; 51():76-82. PubMed ID: 29547768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow cytometry-based immunophenotyping of myeloid-derived suppressor cells in human breast cancer patient blood samples.
    Lee EJ; Jung S; Park KH; Park SI
    J Immunol Methods; 2022 Nov; 510():113348. PubMed ID: 36058258
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.