These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36058375)

  • 1. Enhanced visible-light driven photocatalytic degradation of bisphenol A by tuning electronic structure of Bi/BiOBr.
    Wang Q; Cao Y; Yu Y; Zhang C; Huang J; Liu G; Zhang X; Wang Z; Ozgun H; Ersahin ME; Wang W
    Chemosphere; 2022 Dec; 308(Pt 2):136276. PubMed ID: 36058375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel S-doped BiOBr nanosheets for the enhanced photocatalytic degradation of bisphenol A under visible light irradiation.
    Wang CY; Zeng Q; Zhu G
    Chemosphere; 2021 Apr; 268():128854. PubMed ID: 33220984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron-Level Mechanistic Insights into Ce Doping for Enhanced Efficiency Degradation of Bisphenol A under Visible Light Irradiation.
    Zeng Q; Wang CY; Xu BX; Han J; Fang X; Zhu G
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35458090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-efficient BiOBr-x%La@y%CNQDs nanocomposites with enhanced generation and separation of photogenerated carriers towards bisphenol A degradation and toxicity reduction.
    Yu W; Wang Y; Wan S; Sun L; Yu Z
    Chemosphere; 2022 Dec; 308(Pt 2):136390. PubMed ID: 36113661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning interfacial oxygen vacancy level of bismuth oxybromide to enhance photocatalytic degradation of bisphenol A.
    Liu LX; Liu C; Li B; Dong YM; Wang XH; Zhang X
    Chemosphere; 2024 May; 356():141911. PubMed ID: 38583539
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-Light-Driven Ag-Doped BiOBr Nanoplates with an Enhanced Photocatalytic Performance for the Degradation of Bisphenol A.
    Wang CY; Zeng Q; Wang LX; Fang X; Zhu G
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced photocatalytic degradation of tetracycline hydrochloride over Au-doped BiOBr nanosheets under visible light irradiation.
    Wang CY; Fang X; Zeng Q; Zhou HD; Lu Y
    PLoS One; 2022; 17(8):e0273169. PubMed ID: 36018844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic removal of organic pollutants in aqueous solution by Bi(4)Nb(x)Ta((1-x))O(8)I.
    Hu XY; Fan J; Zhang KL; Wang JJ
    Chemosphere; 2012 Jun; 87(10):1155-60. PubMed ID: 22386458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Microwave-Assisted Synthesis and Visible-Light Photocatalytic Activity Enhancement of BiOBr/RGO Nanocomposites for Degradation of Methylene Blue.
    Shih KY; Kuan YL; Wang ER
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Bi₁₂O₁₅Cl₆ Photocatalyst for the Degradation of Bisphenol A under Visible-Light Irradiation.
    Wang CY; Zhang X; Song XN; Wang WK; Yu HQ
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5320-6. PubMed ID: 26848924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on the progress of the photocatalytic removal of refractory pollutants from water by BiOBr-based nanocomposites.
    Sun J; Jiang C; Wu Z; Liu Y; Sun S
    Chemosphere; 2022 Dec; 308(Pt 1):136107. PubMed ID: 35998730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous formation of Bi
    Lee GY; Cho EC; Lo PY; Zheng JH; Huang JH; Chen YL; Lee KC
    Chemosphere; 2020 Nov; 258():127384. PubMed ID: 32947660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel BiOBr/rGO photocatalysts for degradation of organic and antibiotic pollutants under visible light irradiation: Tetracycline degradation pathways, kinetics, and mechanism insight.
    Shkir M; Aldirham SH; AlFaify S; Ali AM
    Chemosphere; 2024 Jun; 357():141934. PubMed ID: 38615957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers.
    Wu Y; Ji H; Liu Q; Sun Z; Li P; Ding P; Guo M; Yi X; Xu W; Wang CC; Gao S; Wang Q; Liu W; Chen S
    J Hazard Mater; 2022 Feb; 424(Pt C):127563. PubMed ID: 34736201
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative study on photocatalytic material activity of BiOBr flower microspheres and sheet structure.
    Gao Z; Yao B; Xu T
    Environ Technol; 2021 Apr; 42(9):1461-1471. PubMed ID: 31538860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of solar-driven photocatalytic activity of oxygen vacancy-rich Bi/BiOBr/Sr
    Li Y; Zhang Y; Wang J; Fan Y; Xiao T; Yin Z; Wang T; Qiu J; Song Z
    J Environ Sci (China); 2022 May; 115():76-87. PubMed ID: 34969479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Ag/BiOBr/CeO
    Wang Y; Xia X; Gao S; Zhao X; Wang G; Han X
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):46200-46213. PubMed ID: 35167019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photocatalytic degradation of bisphenol A by magnetically separable bismuth oxyiodide magnetite nanocomposites under solar light irradiation.
    Kim B; Jang J; Lee DS
    Chemosphere; 2022 Feb; 289():133040. PubMed ID: 34864009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A.
    Xiao X; Hao R; Liang M; Zuo X; Nan J; Li L; Zhang W
    J Hazard Mater; 2012 Sep; 233-234():122-30. PubMed ID: 22818177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ construction bismuth oxycarbonate/bismuth oxybromide Z-scheme heterojunction for efficient photocatalytic removal of tetracycline and ciprofloxacin.
    Yan X; Ji Q; Wang C; Xu J; Wang L
    J Colloid Interface Sci; 2021 Apr; 587():820-830. PubMed ID: 33234313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.