These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36058377)

  • 1. A review of pesticide phototransformation on the leaf surface: Models, mechanism, and influencing factors.
    Xi N; Li Y; Xia X
    Chemosphere; 2022 Dec; 308(Pt 1):136260. PubMed ID: 36058377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodegradation of pesticides on plant and soil surfaces.
    Katagi T
    Rev Environ Contam Toxicol; 2004; 182():1-189. PubMed ID: 15217019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Perinaphthenone phototransformation in a model of leaf epicuticular waxes.
    Trivella AS; Monadjemi S; Worrall DR; Kirkpatrick I; Arzoumanian E; Richard C
    J Photochem Photobiol B; 2014 Jan; 130():93-101. PubMed ID: 24300996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights into pesticide photoprotection.
    Trivella A; Richard C
    Environ Sci Pollut Res Int; 2014 Apr; 21(7):4828-36. PubMed ID: 23361175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate warming inhibits neonicotinoid photodegradation on vegetable leaves: Important role of the olefin group in leaf wax.
    Xi N; Xia X; Li Y
    Sci Total Environ; 2023 Jul; 882():163399. PubMed ID: 37061057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototransformation of pesticides on plant leaves: the case of sulcotrione.
    Ter Halle A; Wiszniowski J; Richard C
    Commun Agric Appl Biol Sci; 2007; 72(2):45-52. PubMed ID: 18399423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of indirect photochemical degradation in the environmental fate of pesticides: a review.
    Remucal CK
    Environ Sci Process Impacts; 2014 Apr; 16(4):628-53. PubMed ID: 24419250
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of the effects of physicochemical properties on the foliar penetration of pesticides and its potential for estimating pesticide volatilization from plants.
    Lichiheb N; Personne E; Bedos C; Van den Berg F; Barriuso E
    Sci Total Environ; 2016 Apr; 550():1022-1031. PubMed ID: 26855355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phototransformation of selected organophosphorus pesticides: roles of hydroxyl and carbonate radicals.
    Wu C; Linden KG
    Water Res; 2010 Jun; 44(12):3585-94. PubMed ID: 20537677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phototransformation of the herbicide sulcotrione on maize cuticular wax.
    Ter Halle A; Drncova D; Richard C
    Environ Sci Technol; 2006 May; 40(9):2989-95. PubMed ID: 16719102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foliar Photodegradation in Pesticide Fate Modeling: Development and Evaluation of the Pesticide Dissipation from Agricultural Land (PeDAL) Model.
    Lyons SM; Hageman KJ
    Environ Sci Technol; 2021 Apr; 55(8):4842-4850. PubMed ID: 33779156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An overview on common aspects influencing the dissipation pattern of pesticides: a review.
    Farha W; Abd El-Aty AM; Rahman MM; Shin HC; Shim JH
    Environ Monit Assess; 2016 Dec; 188(12):693. PubMed ID: 27888425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Accelerated Solvent Extraction (ASE) and Energized Dispersive Guided Extraction (EDGE) for the analysis of pesticides in leaves.
    Kinross AD; Hageman KJ; Doucette WJ; Foster AL
    J Chromatogr A; 2020 Sep; 1627():461414. PubMed ID: 32823112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated Temperatures Decrease the Photodegradation Rate of Pyrethroid Insecticides on Spinach Leaves: Implications for the Effect of Climate Warming.
    Xi N; Li Y; Chen J; Yang Y; Duan J; Xia X
    Environ Sci Technol; 2021 Jan; 55(2):1167-1177. PubMed ID: 33356194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Pesticide Penetration and Persistence on Harvested and Live Basil Leaves Using Surface-Enhanced Raman Scattering Mapping.
    Yang T; Zhao B; Kinchla AJ; Clark JM; He L
    J Agric Food Chem; 2017 May; 65(17):3541-3550. PubMed ID: 28393527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect photochemistry in sunlit surface waters: photoinduced production of reactive transient species.
    Vione D; Minella M; Maurino V; Minero C
    Chemistry; 2014 Aug; 20(34):10590-606. PubMed ID: 24888627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging investigator series: sunlight photolysis of 2,4-D herbicides in systems simulating leaf surfaces.
    Su L; Sivey JD; Dai N
    Environ Sci Process Impacts; 2018 Aug; 20(8):1123-1135. PubMed ID: 29974906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic probabilistic risk assessment of pesticide residues in tea leaves.
    Lu EH; Huang SZ; Yu TH; Chiang SY; Wu KY
    Chemosphere; 2020 May; 247():125692. PubMed ID: 31962224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species.
    Zhu K; Jia H; Sun Y; Dai Y; Zhang C; Guo X; Wang T; Zhu L
    Water Res; 2020 Apr; 173():115564. PubMed ID: 32028245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.