These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36058985)
1. Volumetric measurement of intracranial meningiomas: a comparison between linear, planimetric, and machine learning with multiparametric voxel-based morphometry methods. Dos Santos Silva J; Schreiner CA; de Lima L; Brigido CEPL; Wilson CD; McVeigh L; Acchiardo J; Landeiro JA; Acioly MA; Cohen-Gadol A J Neurooncol; 2023 Jan; 161(2):235-243. PubMed ID: 36058985 [TBL] [Abstract][Full Text] [Related]
2. Reliability of the Size Evaluation Method for Meningiomas: Maximum Diameter, ABC/2 Formula, and Planimetry Method. Ishi Y; Terasaka S; Yamaguchi S; Yoshida M; Endo S; Kobayashi H; Houkin K World Neurosurg; 2016 Oct; 94():80-88. PubMed ID: 27381669 [TBL] [Abstract][Full Text] [Related]
3. Correlation of volumetric growth and histological grade in 50 meningiomas. Soon WC; Fountain DM; Koczyk K; Abdulla M; Giri S; Allinson K; Matys T; Guilfoyle MR; Kirollos RW; Santarius T Acta Neurochir (Wien); 2017 Nov; 159(11):2169-2177. PubMed ID: 28791500 [TBL] [Abstract][Full Text] [Related]
4. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299 [TBL] [Abstract][Full Text] [Related]
5. Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning. Kang H; Witanto JN; Pratama K; Lee D; Choi KS; Choi SH; Kim KM; Kim MS; Kim JW; Kim YH; Park SJ; Park CK J Magn Reson Imaging; 2023 Mar; 57(3):871-881. PubMed ID: 35775971 [TBL] [Abstract][Full Text] [Related]
6. Comparison of ABC/2 estimation and a volumetric computerized method for measurement of meningiomas using magnetic resonance imaging. Opalak CF; Parry M; Rock AK; Sima AP; Carr MT; Chandra V; Workman KG; Somasundaram A; Broaddus WC J Neurooncol; 2019 Sep; 144(2):275-282. PubMed ID: 31401721 [TBL] [Abstract][Full Text] [Related]
7. Automated Meningioma Segmentation in Multiparametric MRI : Comparable Effectiveness of a Deep Learning Model and Manual Segmentation. Laukamp KR; Pennig L; Thiele F; Reimer R; Görtz L; Shakirin G; Zopfs D; Timmer M; Perkuhn M; Borggrefe J Clin Neuroradiol; 2021 Jun; 31(2):357-366. PubMed ID: 32060575 [TBL] [Abstract][Full Text] [Related]
9. Dynamic contrast-enhanced magnetic resonance imaging perfusion characteristics in meningiomas treated with resection and adjuvant radiosurgery. Chidambaram S; Pannullo SC; Roytman M; Pisapia DJ; Liechty B; Magge RS; Ramakrishna R; Stieg PE; Schwartz TH; Ivanidze J Neurosurg Focus; 2019 Jun; 46(6):E10. PubMed ID: 31153141 [TBL] [Abstract][Full Text] [Related]
10. Fully automated detection and segmentation of meningiomas using deep learning on routine multiparametric MRI. Laukamp KR; Thiele F; Shakirin G; Zopfs D; Faymonville A; Timmer M; Maintz D; Perkuhn M; Borggrefe J Eur Radiol; 2019 Jan; 29(1):124-132. PubMed ID: 29943184 [TBL] [Abstract][Full Text] [Related]
11. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning Using Multiparametric Magnetic Resonance Imaging Radiomic Feature Analysis to Predict Ki-67 in World Health Organization Grade I Meningiomas. Khanna O; Fathi Kazerooni A; Farrell CJ; Baldassari MP; Alexander TD; Karsy M; Greenberger BA; Garcia JA; Sako C; Evans JJ; Judy KD; Andrews DW; Flanders AE; Sharan AD; Dicker AP; Shi W; Davatzikos C Neurosurgery; 2021 Oct; 89(5):928-936. PubMed ID: 34460921 [TBL] [Abstract][Full Text] [Related]
13. Growth rate of non-operated meningiomas. Zeidman LA; Ankenbrandt WJ; Du H; Paleologos N; Vick NA J Neurol; 2008 Jun; 255(6):891-5. PubMed ID: 18350353 [TBL] [Abstract][Full Text] [Related]
14. New Software for Preoperative Diagnostics of Meningeal Tumor Histologic Types. Krivoshapkin AL; Sergeev GS; Kalneus LE; Gaytan AS; Murtazin VI; Kurbatov VP; Volkov AM; Kostromskaya DV; Pyatov SM; Amelin ME; Duishobaev AR World Neurosurg; 2016 Jun; 90():123-132. PubMed ID: 26926798 [TBL] [Abstract][Full Text] [Related]
15. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
16. Endoscopic endonasal versus transcranial approach to tuberculum sellae and planum sphenoidale meningiomas in a similar cohort of patients. Bander ED; Singh H; Ogilvie CB; Cusic RC; Pisapia DJ; Tsiouris AJ; Anand VK; Schwartz TH J Neurosurg; 2018 Jan; 128(1):40-48. PubMed ID: 28128693 [TBL] [Abstract][Full Text] [Related]
17. Presurgical detection of brain invasion status in meningiomas based on first-order histogram based texture analysis of contrast enhanced imaging. Kandemirli SG; Chopra S; Priya S; Ward C; Locke T; Soni N; Srivastava S; Jones K; Bathla G Clin Neurol Neurosurg; 2020 Nov; 198():106205. PubMed ID: 32932028 [TBL] [Abstract][Full Text] [Related]
18. Computer-based radiological longitudinal evaluation of meningiomas following stereotactic radiosurgery. Shimol EB; Joskowicz L; Eliahou R; Shoshan Y Int J Comput Assist Radiol Surg; 2018 Feb; 13(2):215-228. PubMed ID: 29032421 [TBL] [Abstract][Full Text] [Related]
19. Assessing preoperative risk of STR in skull meningiomas using MR radiomics and machine learning. Musigmann M; Akkurt BH; Krähling H; Brokinkel B; Henssen DJHA; Sartoretti T; Nacul NG; Stummer W; Heindel W; Mannil M Sci Rep; 2022 Aug; 12(1):14043. PubMed ID: 35982218 [TBL] [Abstract][Full Text] [Related]
20. The natural history of intracranial meningiomas. Oya S; Kim SH; Sade B; Lee JH J Neurosurg; 2011 May; 114(5):1250-6. PubMed ID: 21250802 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]