These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36059132)

  • 21. Ultrafast Self-Healing Superhydrophobic Surface for Underwater Drag Reduction.
    Sun P; Feng X; Tian G; Zhang X; Chu J
    Langmuir; 2022 Sep; 38(35):10875-10885. PubMed ID: 36001007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of an Analytical Model for Optimization of Direct Laser Interference Patterning.
    Voisiat B; Aguilar-Morales AI; Kunze T; Lasagni AF
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrafast Laser Enabling Hierarchical Structures for Versatile Superhydrophobicity with Enhanced Cassie-Baxter Stability and Durability.
    Fan P; Pan R; Zhong M
    Langmuir; 2019 Dec; 35(51):16693-16711. PubMed ID: 31782653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable Bubble Assembling on a Hybrid Superhydrophobic-Superhydrophilic Surface Fabricated by Selective Laser Texturing.
    Sun K; Yang H; Xue W; Cao M; Adeyemi K; Cao Y
    Langmuir; 2018 Nov; 34(44):13203-13209. PubMed ID: 30350683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uphill Water Transport on a Wettability-Patterned Surface: Experimental and Theoretical Results.
    Hirai Y; Mayama H; Matsuo Y; Shimomura M
    ACS Appl Mater Interfaces; 2017 May; 9(18):15814-15821. PubMed ID: 28421741
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Blackening of metals using femtosecond fiber laser.
    Huang H; Yang LM; Bai S; Liu J
    Appl Opt; 2015 Jan; 54(2):324-33. PubMed ID: 25967633
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Underwater drag-reducing effect of superhydrophobic submarine model.
    Zhang S; Ouyang X; Li J; Gao S; Han S; Liu L; Wei H
    Langmuir; 2015; 31(1):587-93. PubMed ID: 25496725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-Beam Picosecond Interference Patterning of Metallic Substrates.
    Hauschwitz P; Jochcová D; Jagdheesh R; Cimrman M; Brajer J; Rostohar D; Mocek T; Kopeček J; Lucianetti A; Smrž M
    Materials (Basel); 2020 Oct; 13(20):. PubMed ID: 33092278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Superhydrophobic Surface Preparation and Wettability Transition of Titanium Alloy with Micro/Nano Hierarchical Texture.
    Yang Z; Zhu C; Zheng N; Le D; Zhou J
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30405075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films.
    Schutzius TM; Bayer IS; Jursich GM; Das A; Megaridis CM
    Nanoscale; 2012 Sep; 4(17):5378-85. PubMed ID: 22820974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laser-induced nanoscale superhydrophobic structures on metal surfaces.
    Jagdheesh R; Pathiraj B; Karatay E; Römer GR; Huis in't Veld AJ
    Langmuir; 2011 Jul; 27(13):8464-9. PubMed ID: 21627133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile fabrication and mechanistic understanding of a transparent reversible superhydrophobic - superhydrophilic surface.
    Majhy B; Iqbal R; Sen AK
    Sci Rep; 2018 Dec; 8(1):18018. PubMed ID: 30575778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High orientation consistency and adjustable convex width of laser-induced periodic surface structures using picosecond laser pulse trains.
    Pan A; Wang W; Mei X; Xia Y; Sun X
    Nanotechnology; 2023 Jun; 34(37):. PubMed ID: 37257445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Laser-Engineered Microcavity Surfaces with a Nanoscale Superhydrophobic Coating for Extreme Boiling Performance.
    Može M; Senegačnik M; Gregorčič P; Hočevar M; Zupančič M; Golobič I
    ACS Appl Mater Interfaces; 2020 May; 12(21):24419-24431. PubMed ID: 32352743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Facile Construction and Fabrication of a Superhydrophobic and Super Oleophilic Stainless Steel Mesh for Separation of Water and Oil.
    Sun Y; Ke Z; Shen C; Wei Q; Sun R; Yang W; Yin Z
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles.
    Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of Superhydrophobic Ti-6Al-4V Surfaces with Single-Scale Micotextures by using Two-Step Laser Irradiation and Silanization.
    He H; Hua R; Li X; Wang C; Ning X; Sun L
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32872413
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formation of laser induced periodic structures on stainless steel using multi-burst picosecond pulses.
    Wang X; Li C; Ma C; Feng J; Hong W; Zhang Z
    Opt Express; 2018 Mar; 26(5):6325-6330. PubMed ID: 29529824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of superhydrophobic bionic surface integrating with VOF simulation studies of liquid drop impacting.
    Liu C; Zhu L; Li J; Liang Y
    Microsc Res Tech; 2019 May; 82(5):615-623. PubMed ID: 30666735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.