These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36059405)

  • 1. Regional Language Speech Recognition from Bone-Conducted Speech Signals through Different Deep Learning Architectures.
    Putta VS; Selwin Mich Priyadharson A; Sundramurthy VP
    Comput Intell Neurosci; 2022; 2022():4473952. PubMed ID: 36059405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intelligibility of bone-conducted speech detected on the scalp assessed by mono-syllable articulation and speech transmission index.
    Nanri S; Shinobu T; Otsuka S; Nakagawa S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6743-6746. PubMed ID: 34892655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of bone conduction microphone locations on speech intelligibility and sound quality.
    McBride M; Tran P; Letowski T; Patrick R
    Appl Ergon; 2011 Mar; 42(3):495-502. PubMed ID: 20934172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enabling Real-Time On-Chip Audio Super Resolution for Bone-Conduction Microphones.
    Li Y; Wang Y; Liu X; Shi Y; Patel S; Shih SF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based speech enhancement using a bone-conducted signal.
    Kechichian P; Srinivasan S
    J Acoust Soc Am; 2012 Mar; 131(3):EL262-7. PubMed ID: 22423818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients.
    Lai YH; Tsao Y; Lu X; Chen F; Su YT; Chen KC; Chen YH; Chen LC; Po-Hung Li L; Lee CH
    Ear Hear; 2018; 39(4):795-809. PubMed ID: 29360687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic recognition of second language speech-in-noise.
    Kim SE; Chernyak BR; Seleznova O; Keshet J; Goldrick M; Bradlow AR
    JASA Express Lett; 2024 Feb; 4(2):. PubMed ID: 38350077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On training targets for deep learning approaches to clean speech magnitude spectrum estimation.
    Nicolson A; Paliwal KK
    J Acoust Soc Am; 2021 May; 149(5):3273. PubMed ID: 34241115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech intelligibility in noise using throat and acoustic microphones.
    Acker-Mills BE; Houtsma AJ; Ahroon WA
    Aviat Space Environ Med; 2006 Jan; 77(1):26-31. PubMed ID: 16422450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ASR-based speech intelligibility prediction: A review.
    Karbasi M; Kolossa D
    Hear Res; 2022 Dec; 426():108606. PubMed ID: 36154977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of vocal and demographic traits on speech intelligibility over bone conduction.
    Pollard KA; Tran PK; Letowski T
    J Acoust Soc Am; 2015 Apr; 137(4):2060-9. PubMed ID: 25920856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal Sensor-Input Architecture with Deep Learning for Audio-Visual Speech Recognition in Wild.
    He Y; Seng KP; Ang LM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Real-Time Dual-Microphone Speech Enhancement Algorithm Assisted by Bone Conduction Sensor.
    Zhou Y; Chen Y; Ma Y; Liu H
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32899533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speech intelligibility differences across sound classes with in-the-ear and free-field microphones in quiet.
    Estis JM; Parisi JA; Moore RE; Brungart DS
    Percept Mot Skills; 2011 Jun; 112(3):845-59. PubMed ID: 21853774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mandarin Electrolaryngeal Speech Recognition Based on WaveNet-CTC.
    Qian Z; Wang L; Zhang S; Liu C; Niu H
    J Speech Lang Hear Res; 2019 Jul; 62(7):2203-2212. PubMed ID: 31200617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligibility of dysarthric speech: perceptions of speakers and listeners.
    Walshe M; Miller N; Leahy M; Murray A
    Int J Lang Commun Disord; 2008; 43(6):633-48. PubMed ID: 18608608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of bone conduction microphone placement on intensity and spectrum of transmitted speech items.
    Tran PK; Letowski TR; McBride ME
    J Acoust Soc Am; 2013 Jun; 133(6):3900-8. PubMed ID: 23742344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matrix sentence intelligibility prediction using an automatic speech recognition system.
    Schädler MR; Warzybok A; Hochmuth S; Kollmeier B
    Int J Audiol; 2015; 54 Suppl 2():100-7. PubMed ID: 26383042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speech signal enhancement in cocktail party scenarios by deep learning based virtual sensing of head-mounted microphones.
    Fischer T; Caversaccio M; Wimmer W
    Hear Res; 2021 Sep; 408():108294. PubMed ID: 34182232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning based sample extraction for automatic speech recognition using dialectal Assamese speech.
    Agarwalla S; Sarma KK
    Neural Netw; 2016 Jun; 78():97-111. PubMed ID: 26783204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.