These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36059426)

  • 1. An Improved Load Forecasting Method Based on the Transfer Learning Structure under Cyber-Threat Condition.
    Zhao L; Zhang X; Chen Y; Peng X; Cao Y
    Comput Intell Neurosci; 2022; 2022():1696663. PubMed ID: 36059426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based neural networks for day-ahead power load probability density forecasting.
    Zhou Y; Zhu D; Chen H; Guo S; Xu CY; Chang FJ
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17741-17764. PubMed ID: 36201077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Intelligence-Based Secured Power Grid Protocol for Smart City.
    Sulaiman A; Nagu B; Kaur G; Karuppaiah P; Alshahrani H; Reshan MSA; AlYami S; Shaikh A
    Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-driven hybrid model for short-term load forecasting and smart grid information management.
    Wen X; Liao J; Niu Q; Shen N; Bao Y
    Sci Rep; 2024 Jun; 14(1):13720. PubMed ID: 38877081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Model Ensemble for Mixed Power Load Forecasting across Multiple Time Horizons.
    Giamarelos N; Papadimitrakis M; Stogiannos M; Zois EN; Livanos NI; Alexandridis A
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Big data analytics and artificial intelligence aspects for privacy and security concerns for demand response modelling in smart grid: A futuristic approach.
    Reka SS; Dragicevic T; Venugopal P; Ravi V; Rajagopal MK
    Heliyon; 2024 Aug; 10(15):e35683. PubMed ID: 39170135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stealthy data integrity attack identification in smart grid networks utilizing deep denoising autoencoder.
    Kousar A; Ahmed S; Altamimi A; Kim SM; Khan ZA
    Heliyon; 2024 Oct; 10(19):e38470. PubMed ID: 39403510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterioration of Electrical Load Forecasting Models in a Smart Grid Environment.
    Azeem A; Ismail I; Jameel SM; Romlie F; Danyaro KU; Shukla S
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensemble learning approach for advanced metering infrastructure in future smart grids.
    Irfan M; Ayub N; Althobiani F; Masood S; Arbab Ahmed Q; Saeed MH; Rahman S; Abdushkour H; Gommosani ME; Shamji VR; Faraj Mursal SN
    PLoS One; 2023; 18(10):e0289672. PubMed ID: 37851626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GridAttackAnalyzer: A Cyber Attack Analysis Framework for Smart Grids.
    Le TD; Ge M; Anwar A; Loke SW; Beuran R; Doss R; Tan Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced mathematical modeling of mitigating security threats in smart grids through deep ensemble model.
    Sharaf SA; Ragab M; Albogami N; Al-Malaise Al-Ghamdi A; Sabir MF; Maghrabi LA; Ashary EB; Alaidaros H
    Sci Rep; 2024 Oct; 14(1):23069. PubMed ID: 39367158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Insight of Deep Learning Based Demand Forecasting in Smart Grids.
    Aguiar-Pérez JM; Pérez-Juárez MÁ
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A survey on advanced machine learning and deep learning techniques assisting in renewable energy generation.
    B SR
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):93407-93421. PubMed ID: 37552450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Security risk models against attacks in smart grid using big data and artificial intelligence.
    Yasin Ghadi Y; Mazhar T; Aurangzeb K; Haq I; Shahzad T; Ali Laghari A; Shahid Anwar M
    PeerJ Comput Sci; 2024; 10():e1840. PubMed ID: 38686008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy Consumption Forecasting for Smart Meters Using Extreme Learning Machine Ensemble.
    de Mattos Neto PSG; de Oliveira JFL; Bassetto P; Siqueira HV; Barbosa L; Alves EP; Marinho MHN; Rissi GF; Li F
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cyber-Physical Vulnerability Assessment in Smart Grids Based on Multilayer Complex Networks.
    Alonso M; Turanzas J; Amaris H; Ledo AT
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of Different Coupling Modes on the Robustness of Smart Grid under Targeted Attack.
    Kang W; Hu G; Zhu P; Liu Q; Hang Z; Liu X
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29795032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intelligent scheduling control method for smart grid based on deep learning.
    Tong Z; Zhou Y; Xu K
    Math Biosci Eng; 2023 Feb; 20(5):7679-7695. PubMed ID: 37161167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential smart grid vulnerabilities to cyber attacks: Current threats and existing mitigation strategies.
    Paul B; Sarker A; Abhi SH; Das SK; Ali MF; Islam MM; Islam MR; Moyeen SI; Rahman Badal MF; Ahamed MH; Sarker SK; Das P; Hasan MM; Saqib N
    Heliyon; 2024 Oct; 10(19):e37980. PubMed ID: 39398004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Operational planning steps in smart electric power delivery system.
    Jayachandran M; Reddy CR; Padmanaban S; Milyani AH
    Sci Rep; 2021 Aug; 11(1):17250. PubMed ID: 34446798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.