These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36059655)
1. Using combined CT-clinical radiomics models to identify epidermal growth factor receptor mutation subtypes in lung adenocarcinoma. Huo JW; Luo TY; Diao L; Lv FJ; Chen WD; Yu RZ; Li Q Front Oncol; 2022; 12():846589. PubMed ID: 36059655 [TBL] [Abstract][Full Text] [Related]
2. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule. Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378 [TBL] [Abstract][Full Text] [Related]
3. Combination of Li S; Li Y; Zhao M; Wang P; Xin J Korean J Radiol; 2022 Sep; 23(9):921-930. PubMed ID: 36047542 [TBL] [Abstract][Full Text] [Related]
4. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. Li S; Luo T; Ding C; Huang Q; Guan Z; Zhang H Med Phys; 2020 Aug; 47(8):3458-3466. PubMed ID: 32416013 [TBL] [Abstract][Full Text] [Related]
5. Distinguishing EGFR mutation molecular subtypes based on MRI radiomics features of lung adenocarcinoma brain metastases. Xu J; Yang Y; Gao Z; Song T; Ma Y; Yu X; Shi C Clin Neurol Neurosurg; 2024 May; 240():108258. PubMed ID: 38552362 [TBL] [Abstract][Full Text] [Related]
6. Optimal Zuo Y; Liu Q; Li N; Li P; Zhang J; Song S Front Oncol; 2023; 13():1173355. PubMed ID: 37223682 [TBL] [Abstract][Full Text] [Related]
7. Development of a Nomogram Based on 3D CT Radiomics Signature to Predict the Mutation Status of EGFR Molecular Subtypes in Lung Adenocarcinoma: A Multicenter Study. Zhang G; Deng L; Zhang J; Cao Y; Li S; Ren J; Qian R; Peng S; Zhang X; Zhou J; Zhang Z; Kong W; Pu H Front Oncol; 2022; 12():889293. PubMed ID: 35574401 [TBL] [Abstract][Full Text] [Related]
8. Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer. Li S; Ding C; Zhang H; Song J; Wu L Med Phys; 2019 Oct; 46(10):4545-4552. PubMed ID: 31376283 [TBL] [Abstract][Full Text] [Related]
9. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Chen Q; Li Y; Cheng Q; Van Valkenburgh J; Sun X; Zheng C; Zhang R; Yuan R Onco Targets Ther; 2022; 15():597-608. PubMed ID: 35669165 [TBL] [Abstract][Full Text] [Related]
10. A clinically practical radiomics-clinical combined model based on PET/CT data and nomogram predicts EGFR mutation in lung adenocarcinoma. Chang C; Zhou S; Yu H; Zhao W; Ge Y; Duan S; Wang R; Qian X; Lei B; Wang L; Liu L; Ruan M; Yan H; Sun X; Xie W Eur Radiol; 2021 Aug; 31(8):6259-6268. PubMed ID: 33544167 [TBL] [Abstract][Full Text] [Related]
11. Using Multi-phase CT Radiomics Features to Predict EGFR Mutation Status in Lung Adenocarcinoma Patients. Zhang G; Man Q; Shang L; Zhang J; Cao Y; Li S; Qian R; Ren J; Pu H; Zhou J; Zhang Z; Kong W Acad Radiol; 2024 Jun; 31(6):2591-2600. PubMed ID: 38290884 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the radiomics-based predictive models using machine learning and nomogram for epidermal growth factor receptor mutation status and subtypes in lung adenocarcinoma. Kawazoe Y; Shiinoki T; Fujimoto K; Yuasa Y; Hirano T; Matsunaga K; Tanaka H Phys Eng Sci Med; 2023 Mar; 46(1):395-403. PubMed ID: 36787023 [TBL] [Abstract][Full Text] [Related]
13. Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients-a radiomics nomogram analysis. Yang X; Liu M; Ren Y; Chen H; Yu P; Wang S; Zhang R; Dai H; Wang C Eur Radiol; 2022 Apr; 32(4):2693-2703. PubMed ID: 34807270 [TBL] [Abstract][Full Text] [Related]
14. Value of pre-therapy Zhang J; Zhao X; Zhao Y; Zhang J; Zhang Z; Wang J; Wang Y; Dai M; Han J Eur J Nucl Med Mol Imaging; 2020 May; 47(5):1137-1146. PubMed ID: 31728587 [TBL] [Abstract][Full Text] [Related]
15. Performance of Zhang M; Bao Y; Rui W; Shangguan C; Liu J; Xu J; Lin X; Zhang M; Huang X; Zhou Y; Qu Q; Meng H; Qian D; Li B Front Oncol; 2020; 10():568857. PubMed ID: 33134170 [TBL] [Abstract][Full Text] [Related]
16. Application of CT radiomics features to predict the EGFR mutation status and therapeutic sensitivity to TKIs of advanced lung adenocarcinoma. Yang C; Chen W; Gong G; Li Z; Qiu Q; Yin Y Transl Cancer Res; 2020 Nov; 9(11):6683-6690. PubMed ID: 35117278 [TBL] [Abstract][Full Text] [Related]
17. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
18. PET/CT Radiomic Features: A Potential Biomarker for EGFR Mutation Status and Survival Outcome Prediction in NSCLC Patients Treated With TKIs. Yang L; Xu P; Li M; Wang M; Peng M; Zhang Y; Wu T; Chu W; Wang K; Meng H; Zhang L Front Oncol; 2022; 12():894323. PubMed ID: 35800046 [TBL] [Abstract][Full Text] [Related]
19. Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Tu W; Sun G; Fan L; Wang Y; Xia Y; Guan Y; Li Q; Zhang D; Liu S; Li Z Lung Cancer; 2019 Jun; 132():28-35. PubMed ID: 31097090 [TBL] [Abstract][Full Text] [Related]
20. Predicting EGFR mutation status in lung adenocarcinoma presenting as ground-glass opacity: utilizing radiomics model in clinical translation. Cheng B; Deng H; Zhao Y; Xiong J; Liang P; Li C; Liang H; Shi J; Li J; Xiong S; Lai T; Chen Z; Wu J; Qian T; Huan W; Ng MTA; He J; Liang W Eur Radiol; 2022 Sep; 32(9):5869-5879. PubMed ID: 35348863 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]