These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36059917)

  • 1. Iron(II) Complexes Featuring a Redox-Active Dihydrazonopyrrole Ligand.
    Jesse KA; Chang MC; Filatov AS; Anderson JS
    Z Anorg Allg Chem; 2021 Jul; 647(14):1415-1420. PubMed ID: 36059917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence.
    McNeece AJ; Jesse KA; Xie J; Filatov AS; Anderson JS
    J Am Chem Soc; 2020 Jun; 142(24):10824-10832. PubMed ID: 32429663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3d Metal Complexes in T-shaped Geometry as a Gateway to Metalloradical Reactivity.
    Ott JC; Bürgy D; Guan H; Gade LH
    Acc Chem Res; 2022 Mar; 55(6):857-868. PubMed ID: 35164502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutral bis(alpha-iminopyridine)metal complexes of the first-row transition ions (Cr, Mn, Fe, Co, Ni, Zn) and their monocationic analogues: mixed valency involving a redox noninnocent ligand system.
    Lu CC; Bill E; Weyhermüller T; Bothe E; Wieghardt K
    J Am Chem Soc; 2008 Mar; 130(10):3181-97. PubMed ID: 18284242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biopyrrin Pigments: From Heme Metabolites to Redox-Active Ligands and Luminescent Radicals.
    Tomat E; Curtis CJ
    Acc Chem Res; 2021 Dec; 54(24):4584-4594. PubMed ID: 34870973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Aerobic Generation of a Ferric Hydroperoxo Intermediate Via a Preorganized Secondary Coordination Sphere.
    Jesse KA; Anferov SW; Collins KA; Valdez-Moreira JA; Czaikowski ME; Filatov AS; Anderson JS
    J Am Chem Soc; 2021 Nov; 143(43):18121-18130. PubMed ID: 34698493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimetallic Complexes Supported by a Redox-Active Ligand with Fused Pincer-Type Coordination Sites.
    Wang D; Lindeman SV; Fiedler AT
    Inorg Chem; 2015 Sep; 54(17):8744-54. PubMed ID: 26280846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accessibility and selective stabilization of the principal spin states of iron by pyridyl versus phenolic ketimines: modulation of the 6A1 ↔ 2T2 ground-state transformation of the [FeN4O2]+ chromophore.
    Shongwe MS; Al-Zaabi UA; Al-Mjeni F; Eribal CS; Sinn E; Al-Omari IA; Hamdeh HH; Matoga D; Adams H; Morris MJ; Rheingold AL; Bill E; Sellmyer DJ
    Inorg Chem; 2012 Aug; 51(15):8241-53. PubMed ID: 22808945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand redox activity and mixed valency in first-row transition-metal complexes containing tetrachlorocatecholate and radical tetrachlorosemiquinonate ligands.
    Pierpont CG
    Inorg Chem; 2011 Oct; 50(20):9766-72. PubMed ID: 21859145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Late first-row transition metal complexes of a tetradentate pyridinophane ligand: electronic properties and reactivity implications.
    Khusnutdinova JR; Luo J; Rath NP; Mirica LM
    Inorg Chem; 2013 Apr; 52(7):3920-32. PubMed ID: 23517006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the Scope of Aluminum Chemistry with Noninnocent Ligands.
    Parsons LWT; Berben LA
    Acc Chem Res; 2024 Apr; 57(8):1087-1097. PubMed ID: 38581655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Access to and Reactivity of Fe
    Wang Q; Manzano RA; Tinnermann H; Sung S; Leforestier B; Krämer T; Young RD
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):18168-18177. PubMed ID: 34145715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.
    Jones JS; Gabbaï FP
    Acc Chem Res; 2016 May; 49(5):857-67. PubMed ID: 27092722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Switching and redox isomerism in first-row transition metal complexes containing redox active Schiff base ligands.
    Sasmal A; Garribba E; Gómez-García CJ; Desplanches C; Mitra S
    Dalton Trans; 2014 Nov; 43(42):15958-67. PubMed ID: 25233051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of Multisite Metal-Ligand Cooperativity on the Redox Activity of Noninnocent N
    Spielvogel KD; Luna JA; Loria SM; Weisburn LP; Stumme NC; Ringenberg MR; Durgaprasad G; Keith JM; Shaw SK; Daly SR
    Inorg Chem; 2020 Aug; 59(15):10845-10853. PubMed ID: 32639726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Coordinate Formal Cobalt(0), Iron(0), and Manganese(0) Complexes with Persistent Carbene and Alkene Ligation.
    Liu Y; Cheng J; Deng L
    Acc Chem Res; 2020 Jan; 53(1):244-254. PubMed ID: 31880150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative redox and spin activity from three redox congeners of sulfur-bridged iron nitrosyl and nickel dithiolene complexes.
    Quiroz M; Lockart MM; Saber MR; Vali SW; Elrod LC; Pierce BS; Hall MB; Darensbourg MY
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2201240119. PubMed ID: 35696567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal-ligand cooperation by aromatization/dearomatization.
    Zell T; Milstein D
    Acc Chem Res; 2015 Jul; 48(7):1979-94. PubMed ID: 26079678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Ligand Cooperativity in Iron Dinitrogen Complexes: Proton-Coupled Electron Transfer Disproportionation and an Anionic Fe(0)N
    Regenauer NI; Wadepohl H; Roşca DA
    Inorg Chem; 2022 May; 61(19):7426-7435. PubMed ID: 35508073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cobalt adduct of an N-hydroxy-piperidinium cation.
    Anferov SW; Anderson JS
    J Coord Chem; 2022; 75(11-14):1853-1864. PubMed ID: 37139469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.