BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36060528)

  • 1. Electrospray Ionization Mass Spectrometry of Apolipoprotein CIII to Evaluate
    Wada Y; Okamoto N
    Mass Spectrom (Tokyo); 2022; 11(1):A0104. PubMed ID: 36060528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Apolipoprotein C-III O-glycoform profiling of 500 serum samples by matrix-assisted laser desorption/ionization mass spectrometry for diagnosis of congenital disorders of glycosylation.
    Wada Y; Okamoto N
    J Mass Spectrom; 2021 Apr; 56(4):e4597. PubMed ID: 32677746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation.
    Wada Y
    Glycoconj J; 2016 Jun; 33(3):297-307. PubMed ID: 26873821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospray Ionization Mass Spectrometry of Transferrin: Use of Quadrupole Mass Analyzers for Congenital Disorders of Glycosylation.
    Wada Y; Okamoto N
    Mass Spectrom (Tokyo); 2022; 11(1):A0103. PubMed ID: 36060529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J
    Methods Enzymol; 2005; 405():139-71. PubMed ID: 16413314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mass Spectrometry of Transferrin and Apolipoprotein CIII from Dried Blood Spots for Congenital Disorders of Glycosylation.
    Wada Y; Kadoya M; Okamoto N
    Mass Spectrom (Tokyo); 2022; 11(1):A0113. PubMed ID: 36713804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry to Detect Diagnostic Glycopeptide Markers of Congenital Disorders of Glycosylation.
    Wada Y
    Mass Spectrom (Tokyo); 2020; 9(1):A0084. PubMed ID: 32547898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of new apolipoprotein-CIII glycoforms with ultrahigh resolution MALDI-FTICR mass spectrometry of human sera.
    Nicolardi S; van der Burgt YE; Dragan I; Hensbergen PJ; Deelder AM
    J Proteome Res; 2013 May; 12(5):2260-8. PubMed ID: 23527852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MALDI-MS profiling of serum O-glycosylation and N-glycosylation in COG5-CDG.
    Palmigiano A; Bua RO; Barone R; Rymen D; Régal L; Deconinck N; Dionisi-Vici C; Fung CW; Garozzo D; Jaeken J; Sturiale L
    J Mass Spectrom; 2017 Jun; 52(6):372-377. PubMed ID: 28444691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free analysis of o-glycosylation site-occupancy based on the signal intensity of glycopeptide/peptide ions.
    Wada Y
    Mass Spectrom (Tokyo); 2012; 1(2):A0008. PubMed ID: 24349909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting Total Plasma and Protein-Specific Glycosylation Profiles in Congenital Disorders of Glycosylation.
    Hipgrave Ederveen AL; de Haan N; Baerenfaenger M; Lefeber DJ; Wuhrer M
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33076454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mass spectrometry for congenital disorders of glycosylation, CDG.
    Wada Y
    J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 838(1):3-8. PubMed ID: 16517226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MALDI-TOF MS applied to apoC-III glycoforms of patients with congenital disorders affecting O-glycosylation. Comparison with two-dimensional electrophoresis.
    Yen-Nicolaÿ S; Boursier C; Rio M; Lefeber DJ; Pilon A; Seta N; Bruneel A
    Proteomics Clin Appl; 2015 Aug; 9(7-8):787-93. PubMed ID: 25641685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new strategy implementing mass spectrometry in the diagnosis of congenital disorders of N-glycosylation (CDG).
    Casetta B; Malvagia S; Funghini S; Martinelli D; Dionisi-Vici C; Barone R; Fiumara A; Donati MA; Guerrini R; la Marca G
    Clin Chem Lab Med; 2020 Aug; 59(1):165-171. PubMed ID: 32776892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased Clinical Sensitivity and Specificity of Plasma Protein
    Chen J; Li X; Edmondson A; Meyers GD; Izumi K; Ackermann AM; Morava E; Ficicioglu C; Bennett MJ; He M
    Clin Chem; 2019 May; 65(5):653-663. PubMed ID: 30770376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycosylation Analysis for Congenital Disorders of Glycosylation.
    Li X; Raihan MA; Reynoso FJ; He M
    Curr Protoc Hum Genet; 2015 Jul; 86():17.18.1-17.18.22. PubMed ID: 26132001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HILIC-UPLC-MS for high throughput and isomeric N-glycan separation and characterization in Congenital Disorders Glycosylation and human diseases.
    Messina A; Palmigiano A; Esposito F; Fiumara A; Bordugo A; Barone R; Sturiale L; Jaeken J; Garozzo D
    Glycoconj J; 2021 Apr; 38(2):201-211. PubMed ID: 32915358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution mass spectrometry glycoprofiling of intact transferrin for diagnosis and subtype identification in the congenital disorders of glycosylation.
    van Scherpenzeel M; Steenbergen G; Morava E; Wevers RA; Lefeber DJ
    Transl Res; 2015 Dec; 166(6):639-649.e1. PubMed ID: 26307094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific characterisation of densely O-glycosylated mucin-type peptides using electron transfer dissociation ESI-MS/MS.
    Thaysen-Andersen M; Wilkinson BL; Payne RJ; Packer NH
    Electrophoresis; 2011 Dec; 32(24):3536-45. PubMed ID: 22180206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific N-glycan characterization of human complement factor H.
    Fenaille F; Le Mignon M; Groseil C; Ramon C; Riandé S; Siret L; Bihoreau N
    Glycobiology; 2007 Sep; 17(9):932-44. PubMed ID: 17591618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.