These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36060754)

  • 1. The l-rhamnose-dependent regulator RhaS and its target promoters from
    Fricke PM; Gries ML; Mürköster M; Höninger M; Gätgens J; Bott M; Polen T
    Front Microbiol; 2022; 13():981767. PubMed ID: 36060754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A regulatory cascade in the induction of rhaBAD.
    Egan SM; Schleif RF
    J Mol Biol; 1993 Nov; 234(1):87-98. PubMed ID: 8230210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly tunable TetR-dependent target gene expression in the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Lürkens M; Hünnefeld M; Sonntag CK; Bott M; Davari MD; Polen T
    Appl Microbiol Biotechnol; 2021 Sep; 105(18):6835-6852. PubMed ID: 34448898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AraC/XylS family activator RhaS negatively autoregulates rhaSR expression by preventing cyclic AMP receptor protein activation.
    Wickstrum JR; Skredenske JM; Balasubramaniam V; Jones K; Egan SM
    J Bacteriol; 2010 Jan; 192(1):225-32. PubMed ID: 19854903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans.
    Fricke PM; Link T; Gätgens J; Sonntag C; Otto M; Bott M; Polen T
    Appl Microbiol Biotechnol; 2020 Nov; 104(21):9267-9282. PubMed ID: 32974745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic Chemical Inducers and Genetic Decoupling Enable Orthogonal Control of the rhaBAD Promoter.
    Kelly CL; Liu Z; Yoshihara A; Jenkinson SF; Wormald MR; Otero J; Estévez A; Kato A; Marqvorsen MH; Fleet GW; Estévez RJ; Izumori K; Heap JT
    ACS Synth Biol; 2016 Oct; 5(10):1136-1145. PubMed ID: 27247275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of cyclic AMP receptor protein and the carboxyl-terminal domain of the alpha subunit in transcription activation of the Escherichia coli rhaBAD operon.
    Holcroft CC; Egan SM
    J Bacteriol; 2000 Jun; 182(12):3529-35. PubMed ID: 10852886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR.
    Wickstrum JR; Egan SM
    J Bacteriol; 2004 Sep; 186(18):6277-85. PubMed ID: 15342598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain.
    Wickstrum JR; Skredenske JM; Kolin A; Jin DJ; Fang J; Egan SM
    J Bacteriol; 2007 Jul; 189(14):4984-93. PubMed ID: 17513476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA-dependent renaturation of an insoluble DNA binding protein. Identification of the RhaS binding site at rhaBAD.
    Egan SM; Schleif RF
    J Mol Biol; 1994 Nov; 243(5):821-9. PubMed ID: 7966303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli.
    Wickstrum JR; Santangelo TJ; Egan SM
    J Bacteriol; 2005 Oct; 187(19):6708-18. PubMed ID: 16166533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic evidence that transcription activation by RhaS involves specific amino acid contacts with sigma 70.
    Bhende PM; Egan SM
    J Bacteriol; 2000 Sep; 182(17):4959-69. PubMed ID: 10940041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of the Escherichia coli rhaT gene.
    Vía P; Badía J; Baldomà L; Obradors N; Aguilar J
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1833-40. PubMed ID: 8757746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a tunable bicistronic TetR autoregulation expression system in
    Bertucci M; Ariano K; Zumsteg M; Schweiger P
    PeerJ; 2022; 10():e13639. PubMed ID: 35873911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR.
    Kolin A; Balasubramaniam V; Skredenske JM; Wickstrum JR; Egan SM
    Mol Microbiol; 2008 Apr; 68(2):448-61. PubMed ID: 18366439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RhaS activator controls the Erwinia chrysanthemi 3937 genes rhiN, rhiT and rhiE involved in rhamnogalacturonan catabolism.
    Hugouvieux-Cotte-Pattat N
    Mol Microbiol; 2004 Mar; 51(5):1361-74. PubMed ID: 14982630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases.
    Fricke PM; Klemm A; Bott M; Polen T
    Appl Microbiol Biotechnol; 2021 May; 105(9):3423-3456. PubMed ID: 33856535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning, mapping and gene product identification of rhaT from Escherichia coli K12.
    Baldomá L; Badía J; Sweet G; Aguilar J
    FEMS Microbiol Lett; 1990 Oct; 60(1-2):103-7. PubMed ID: 2283027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Gradient Promoters of
    Chen Y; Liu L; Yu S; Li J; Zhou J; Chen J
    Front Bioeng Biotechnol; 2021; 9():673844. PubMed ID: 33898410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FNR-Type Regulator GoxR of the Obligatorily Aerobic Acetic Acid Bacterium
    Schweikert S; Kranz A; Yakushi T; Filipchyk A; Polen T; Etterich H; Bringer S; Bott M
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.