BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36061145)

  • 21. Differential diagnosis of gastric low- and high grade dysplasia using C6orf15 protein.
    Liu L; Wang X; He Q; Yu B; Wang J; Shen H
    Ann Diagn Pathol; 2024 Mar; 71():152298. PubMed ID: 38547762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dysregulated Wnt signalling and recurrent mutations of the tumour suppressor RNF43 in early gastric carcinogenesis.
    Min BH; Hwang J; Kim NK; Park G; Kang SY; Ahn S; Ahn S; Ha SY; Lee YK; Kushima R; Van Vrancken M; Kim MJ; Park C; Park HY; Chae J; Jang SS; Kim SJ; Kim YH; Kim JI; Kim KM
    J Pathol; 2016 Nov; 240(3):304-314. PubMed ID: 27514024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying Senescence-Associated Phenotypes in Primary Multipotent Mesenchymal Stromal Cell Cultures.
    Nadeau S; Cheng A; Colmegna I; Rodier F
    Methods Mol Biol; 2019; 2045():93-105. PubMed ID: 31020633
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis?
    Ohtani N
    Inflamm Regen; 2022 Apr; 42(1):11. PubMed ID: 35365245
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of prognostic biomarkers and correlations with immune infiltrates among cGAS-STING in hepatocellular carcinoma.
    Qi Z; Yan F; Chen D; Xing W; Li Q; Zeng W; Bi B; Xie J
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 33006365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Senescence in head and neck squamous cell carcinoma: relationship between senescence-associated secretory phenotype (SASP) mRNA expression level and clinicopathological features.
    Ostrowska K; Niewinski P; Piotrowski I; Ostapowicz J; Koczot S; Suchorska WM; Golusiński P; Masternak MM; Golusiński W
    Clin Transl Oncol; 2024 Apr; 26(4):1022-1032. PubMed ID: 38175424
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a small molecule SR9009 that activates NRF2 to counteract cellular senescence.
    Gao LB; Wang YH; Liu ZH; Sun Y; Cai P; Jing Q
    Aging Cell; 2021 Oct; 20(10):e13483. PubMed ID: 34587364
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Irradiation-induced senescence of bone marrow mesenchymal stem cells aggravates osteogenic differentiation dysfunction via paracrine signaling.
    Bai J; Wang Y; Wang J; Zhai J; He F; Zhu G
    Am J Physiol Cell Physiol; 2020 May; 318(5):C1005-C1017. PubMed ID: 32233952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TXNRD1 drives the innate immune response in senescent cells with implications for age-associated inflammation.
    Hao X; Zhao B; Towers M; Liao L; Monteiro EL; Xu X; Freeman C; Peng H; Tang HY; Havas A; Kossenkov AV; Berger SL; Adams PD; Speicher DW; Schultz D; Marmorstein R; Zaret KS; Zhang R
    Nat Aging; 2024 Feb; 4(2):185-197. PubMed ID: 38267705
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Paracrine Interaction of Cancer Stem Cell Populations Is Regulated by the Senescence-Associated Secretory Phenotype (SASP).
    Lagunas AM; Francis M; Maniar NB; Nikolova G; Wu J; Crowe DL
    Mol Cancer Res; 2019 Jul; 17(7):1480-1492. PubMed ID: 31043491
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dysfunctional telomeres trigger cellular senescence mediated by cyclic GMP-AMP synthase.
    Abdisalaam S; Bhattacharya S; Mukherjee S; Sinha D; Srinivasan K; Zhu M; Akbay EA; Sadek HA; Shay JW; Asaithamby A
    J Biol Chem; 2020 Aug; 295(32):11144-11160. PubMed ID: 32540968
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genes and pathways involved in senescence bypass identified by functional genetic screens.
    Roupakia E; Markopoulos GS; Kolettas E
    Mech Ageing Dev; 2021 Mar; 194():111432. PubMed ID: 33422562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Keeping the senescence secretome under control: Molecular reins on the senescence-associated secretory phenotype.
    Malaquin N; Martinez A; Rodier F
    Exp Gerontol; 2016 Sep; 82():39-49. PubMed ID: 27235851
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Identification of Cytosolic DNA Sensor cGAS-STING as Immune-Related Risk Factor in Renal Carcinoma following Pan-Cancer Analysis.
    Wu Z; Lin Y; Liu LM; Hou YL; Qin WT; Zhang L; Jiang SH; Yang Q; Bai YR
    J Immunol Res; 2022; 2022():7978042. PubMed ID: 35983076
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-Acetyltransferase 10 Promotes Micronuclei Formation to Activate the Senescence-Associated Secretory Phenotype Machinery in Colorectal Cancer Cells.
    Cao Y; Yao M; Wu Y; Ma N; Liu H; Zhang B
    Transl Oncol; 2020 Aug; 13(8):100783. PubMed ID: 32428852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA sensing in senescence.
    Ruiz de Galarreta M; Lujambio A
    Nat Cell Biol; 2017 Aug; 19(9):1008-1009. PubMed ID: 28855731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans.
    Carroll JE; Cole SW; Seeman TE; Breen EC; Witarama T; Arevalo JMG; Ma J; Irwin MR
    Brain Behav Immun; 2016 Jan; 51():223-229. PubMed ID: 26336034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanisms and cellular functions of cGAS-STING signalling.
    Hopfner KP; Hornung V
    Nat Rev Mol Cell Biol; 2020 Sep; 21(9):501-521. PubMed ID: 32424334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SASP: Tumor Suppressor or Promoter? Yes!
    Rao SG; Jackson JG
    Trends Cancer; 2016 Nov; 2(11):676-687. PubMed ID: 28741506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. IFI16, an amplifier of DNA-damage response: Role in cellular senescence and aging-associated inflammatory diseases.
    Choubey D; Panchanathan R
    Ageing Res Rev; 2016 Jul; 28():27-36. PubMed ID: 27063514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.