These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 36061209)
1. Insights to maternal regulation of the paternal genome in mammalian livestock embryos: A mini-review. Daigneault BW Front Genet; 2022; 13():909804. PubMed ID: 36061209 [TBL] [Abstract][Full Text] [Related]
2. Dynamics of paternal contributions to early embryo development in large animals. Daigneault BW Biol Reprod; 2021 Feb; 104(2):274-281. PubMed ID: 32997138 [TBL] [Abstract][Full Text] [Related]
3. An unexpected function of the Prader-Willi syndrome imprinting center in maternal imprinting in mice. Wu MY; Jiang M; Zhai X; Beaudet AL; Wu RC PLoS One; 2012; 7(4):e34348. PubMed ID: 22496793 [TBL] [Abstract][Full Text] [Related]
4. Parental-to-embryo switch of chromosome organization in early embryogenesis. Collombet S; Ranisavljevic N; Nagano T; Varnai C; Shisode T; Leung W; Piolot T; Galupa R; Borensztein M; Servant N; Fraser P; Ancelin K; Heard E Nature; 2020 Apr; 580(7801):142-146. PubMed ID: 32238933 [TBL] [Abstract][Full Text] [Related]
5. Imprinting at the mouse Ins2 locus: evidence for cis- and trans-allelic interactions. Duvillié B; Bucchini D; Tang T; Jami J; Pàldi A Genomics; 1998 Jan; 47(1):52-7. PubMed ID: 9465295 [TBL] [Abstract][Full Text] [Related]
6. The conflict theory of genomic imprinting: how much can be explained? Iwasa Y Curr Top Dev Biol; 1998; 40():255-93. PubMed ID: 9673853 [TBL] [Abstract][Full Text] [Related]
7. Polycomb-mediated repression of paternal chromosomes maintains haploid dosage in diploid embryos of Montgomery SA; Hisanaga T; Wang N; Axelsson E; Akimcheva S; Sramek M; Liu C; Berger F Elife; 2022 Aug; 11():. PubMed ID: 35996955 [TBL] [Abstract][Full Text] [Related]
8. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster. MacDonald WA; Menon D; Bartlett NJ; Sperry GE; Rasheva V; Meller V; Lloyd VK BMC Biol; 2010 Jul; 8():105. PubMed ID: 20673338 [TBL] [Abstract][Full Text] [Related]
9. Non-equivalent contributions of maternal and paternal genomes to early plant embryogenesis. Del Toro-De León G; García-Aguilar M; Gillmor CS Nature; 2014 Oct; 514(7524):624-7. PubMed ID: 25209660 [TBL] [Abstract][Full Text] [Related]
10. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. Kong Q; Banaszynski LA; Geng F; Zhang X; Zhang J; Zhang H; O'Neill CL; Yan P; Liu Z; Shido K; Palermo GD; Allis CD; Rafii S; Rosenwaks Z; Wen D J Biol Chem; 2018 Mar; 293(10):3829-3838. PubMed ID: 29358330 [TBL] [Abstract][Full Text] [Related]
11. Perspective: maternal kin groups and the origins of asymmetric genetic systems-genomic imprinting, haplodiploidy, and parthenogenesis. Normark BB Evolution; 2006 Apr; 60(4):631-42. PubMed ID: 16739447 [TBL] [Abstract][Full Text] [Related]
12. Paternal dual barrier by Ifg2-H19 and Dlk1-Gtl2 to parthenogenesis in mice. Kono T; Kawahara M; Wu Q; Hiura H; Obata Y Ernst Schering Res Found Workshop; 2006; (60):23-33. PubMed ID: 16903414 [TBL] [Abstract][Full Text] [Related]
13. Delayed activation of the paternal genome during seed development. Vielle-Calzada JP; Baskar R; Grossniklaus U Nature; 2000 Mar; 404(6773):91-4. PubMed ID: 10716449 [TBL] [Abstract][Full Text] [Related]
14. Origins of extreme sexual dimorphism in genomic imprinting. Bourc'his D; Bestor TH Cytogenet Genome Res; 2006; 113(1-4):36-40. PubMed ID: 16575161 [TBL] [Abstract][Full Text] [Related]
15. Identification of an imprinted gene cluster in the X-inactivation center. Kobayashi S; Totoki Y; Soma M; Matsumoto K; Fujihara Y; Toyoda A; Sakaki Y; Okabe M; Ishino F PLoS One; 2013; 8(8):e71222. PubMed ID: 23940725 [TBL] [Abstract][Full Text] [Related]
16. Hypermethylation of the non-imprinted maternal MEG3 and paternal MEST alleles is highly variable among normal individuals. Haertle L; Maierhofer A; Böck J; Lehnen H; Böttcher Y; Blüher M; Schorsch M; Potabattula R; El Hajj N; Appenzeller S; Haaf T PLoS One; 2017; 12(8):e0184030. PubMed ID: 28854270 [TBL] [Abstract][Full Text] [Related]
17. Parental-origin-specific epigenetic modification of the mouse H19 gene. Ferguson-Smith AC; Sasaki H; Cattanach BM; Surani MA Nature; 1993 Apr; 362(6422):751-5. PubMed ID: 8469285 [TBL] [Abstract][Full Text] [Related]
18. Maternal DNMT3A-dependent de novo methylation of the paternal genome inhibits gene expression in the early embryo. Richard Albert J; Au Yeung WK; Toriyama K; Kobayashi H; Hirasawa R; Brind'Amour J; Bogutz A; Sasaki H; Lorincz M Nat Commun; 2020 Oct; 11(1):5417. PubMed ID: 33110091 [TBL] [Abstract][Full Text] [Related]
19. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Market-Velker BA; Zhang L; Magri LS; Bonvissuto AC; Mann MR Hum Mol Genet; 2010 Jan; 19(1):36-51. PubMed ID: 19805400 [TBL] [Abstract][Full Text] [Related]
20. Monoallelic expression of nine imprinted genes in the sheep embryo occurs after the blastocyst stage. Thurston A; Taylor J; Gardner J; Sinclair KD; Young LE Reproduction; 2008 Jan; 135(1):29-40. PubMed ID: 18159081 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]