These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36061425)

  • 41. Multiple gene integration to promote erythritol production on glycerol in Yarrowia lipolytica.
    Zhang L; Nie MY; Liu F; Chen J; Wei LJ; Hua Q
    Biotechnol Lett; 2021 Jul; 43(7):1277-1287. PubMed ID: 33797654
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Metabolomic elucidation of the effects of media and carbon sources on fatty acid production by Yarrowia lipolytica.
    Yun EJ; Lee J; Kim DH; Kim J; Kim S; Jin YS; Kim KH
    J Biotechnol; 2018 Apr; 272-273():7-13. PubMed ID: 29499237
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The expression of the Cuphea palustris thioesterase CpFatB2 in Yarrowia lipolytica triggers oleic acid accumulation.
    Stefan A; Hochkoeppler A; Ugolini L; Lazzeri L; Conte E
    Biotechnol Prog; 2016; 32(1):26-35. PubMed ID: 26518537
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production.
    Juszczyk P; Tomaszewska L; Kita A; Rymowicz W
    Bioresour Technol; 2013 Jun; 137():124-31. PubMed ID: 23587815
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single cell oil production on molasses by Yarrowia lipolytica strains overexpressing DGA2 in multicopy.
    Gajdoš P; Nicaud JM; Rossignol T; Čertík M
    Appl Microbiol Biotechnol; 2015 Oct; 99(19):8065-74. PubMed ID: 26078110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developing cellulolytic
    Guo ZP; Robin J; Duquesne S; O'Donohue MJ; Marty A; Bordes F
    Biotechnol Biofuels; 2018; 11():141. PubMed ID: 29785208
    [TBL] [Abstract][Full Text] [Related]  

  • 47. γ-decalactone production by Yarrowia lipolytica and Lindnera saturnus in crude glycerol.
    Soares GPA; Souza KST; Vilela LF; Schwan RF; Dias DR
    Prep Biochem Biotechnol; 2017 Jul; 47(6):633-637. PubMed ID: 28151056
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional overexpression of genes involved in erythritol synthesis in the yeast
    Mirończuk AM; Biegalska A; Dobrowolski A
    Biotechnol Biofuels; 2017; 10():77. PubMed ID: 28352301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elucidating the Effect of Glycerol Concentration and C/N Ratio on Lipid Production Using Yarrowia lipolytica SKY7.
    Kuttiraja M; Douha A; Valéro JR; Tyagi RD
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1586-1600. PubMed ID: 27422535
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Role of Hexokinase and Hexose Transporters in Preferential Use of Glucose over Fructose and Downstream Metabolic Pathways in the Yeast
    Hapeta P; Szczepańska P; Witkowski T; Nicaud JM; Crutz-Le Coq AM; Lazar Z
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502217
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism.
    Yuzbasheva EY; Mostova EB; Andreeva NI; Yuzbashev TV; Fedorov AS; Konova IA; Sineoky SP
    Biotechnol Bioeng; 2018 Feb; 115(2):433-443. PubMed ID: 28832949
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of plant oils upon lipase and citric acid production in Yarrowia lipolytica yeast.
    Darvishi F; Nahvi I; Zarkesh-Esfahani H; Momenbeik F
    J Biomed Biotechnol; 2009; 2009():562943. PubMed ID: 19826636
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Importance of the methyl-citrate cycle on glycerol metabolism in the yeast Yarrowia lipolytica.
    Papanikolaou S; Beopoulos A; Koletti A; Thevenieau F; Koutinas AA; Nicaud JM; Aggelis G
    J Biotechnol; 2013 Dec; 168(4):303-14. PubMed ID: 24432372
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica.
    Rywińska A; Rymowicz W; Zarowska B; Skrzypiński A
    World J Microbiol Biotechnol; 2010 Jul; 26(7):1217-24. PubMed ID: 24026926
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glycerol conversion into a single cell oil by engineered
    Gajdoš P; Nicaud JM; Čertík M
    Eng Life Sci; 2017 Mar; 17(3):325-332. PubMed ID: 32624778
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of Laccase by Recombinant Yarrowia lipolytica from Molasses: Bioprocess Development Using Statistical Modeling and Increase Productivity in Shake-Flask and Bioreactor Cultures.
    Darvishi F; Moradi M; Madzak C; Jolivalt C
    Appl Biochem Biotechnol; 2017 Mar; 181(3):1228-1239. PubMed ID: 27744524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Golden Gate-based metabolic engineering strategy for wild-type strains of Yarrowia lipolytica.
    Egermeier M; Sauer M; Marx H
    FEMS Microbiol Lett; 2019 Feb; 366(4):. PubMed ID: 30698703
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Production of enriched in B vitamins biomass of Yarrowia lipolytica grown in biofuel waste.
    Jach ME; Sajnaga E; Janeczko M; Juda M; Kochanowicz E; Baj T; Malm A
    Saudi J Biol Sci; 2021 May; 28(5):2925-2932. PubMed ID: 34025170
    [No Abstract]   [Full Text] [Related]  

  • 59. Studies on Upgradation of Waste Fish Oil to Lipid-Rich Yeast Biomass in
    Fabiszewska AU; Zieniuk B; Kozłowska M; Mazurczak-Zieniuk PM; Wołoszynowska M; Misiukiewicz-Stępień P; Nowak D
    Foods; 2021 Feb; 10(2):. PubMed ID: 33671224
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineering the oleaginous yeast
    Pang Y; Zhao Y; Li S; Zhao Y; Li J; Hu Z; Zhang C; Xiao D; Yu A
    Biotechnol Biofuels; 2019; 12():241. PubMed ID: 31624503
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.