These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 36061649)

  • 1. Effect of Alloying Elements on the Compressive Mechanical Properties of Biomedical Titanium Alloys: A Systematic Review.
    Jawed SF; Rabadia CD; Khan MA; Khan SJ
    ACS Omega; 2022 Aug; 7(34):29526-29542. PubMed ID: 36061649
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O.
    Stráský J; Harcuba P; Václavová K; Horváth K; Landa M; Srba O; Janeček M
    J Mech Behav Biomed Mater; 2017 Jul; 71():329-336. PubMed ID: 28399493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.
    Karre R; Niranjan MK; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():52-8. PubMed ID: 25746245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binary titanium alloys as dental implant materials-a review.
    Liu X; Chen S; Tsoi JKH; Matinlinna JP
    Regen Biomater; 2017 Oct; 4(5):315-323. PubMed ID: 29026646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening on binary Zr-1X (X = Ti, Nb, Mo, Cu, Au, Pd, Ag, Ru, Hf and Bi) alloys with good in vitro cytocompatibility and magnetic resonance imaging compatibility.
    Zhou FY; Qiu KJ; Li HF; Huang T; Wang BL; Li L; Zheng YF
    Acta Biomater; 2013 Dec; 9(12):9578-87. PubMed ID: 23928334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical and electrochemical characterisation of new Ti-Mo-Nb-Zr alloys for biomedical applications.
    Nnamchi PS; Obayi CS; Todd I; Rainforth MW
    J Mech Behav Biomed Mater; 2016 Jul; 60():68-77. PubMed ID: 26773649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal Structure Evolution, Microstructure Formation, and Properties of Mechanically Alloyed Ultrafine-Grained Ti-Zr-Nb Alloys at 36≤Ti≤70 (at. %).
    Marczewski M; Miklaszewski A; Maeder X; Jurczyk M
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 32012767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of oxygen addition on microstructure and mechanical properties of Ti-Mo alloys for biomedical application.
    Kobayashi S; Okano S
    Front Bioeng Biotechnol; 2024; 12():1380503. PubMed ID: 38605992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Mo and Ta on the Mechanical and Superelastic Properties of Ti-Nb Alloys Prepared by Mechanical Alloying and Spark Plasma Sintering.
    Kalita D; Rogal Ł; Berent K; Góral A; Dutkiewicz J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34067916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocompatibility of Ti-alloys for long-term implantation.
    Abdel-Hady Gepreel M; Niinomi M
    J Mech Behav Biomed Mater; 2013 Apr; 20():407-15. PubMed ID: 23507261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices.
    Ozan S; Lin J; Li Y; Ipek R; Wen C
    Acta Biomater; 2015 Jul; 20():176-187. PubMed ID: 25818950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications.
    Ozan S; Lin J; Li Y; Wen C
    J Mech Behav Biomed Mater; 2017 Nov; 75():119-127. PubMed ID: 28711024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microstructure and mechanical behavior of metal injection molded Ti-Nb binary alloys as biomedical material.
    Zhao D; Chang K; Ebel T; Qian M; Willumeit R; Yan M; Pyczak F
    J Mech Behav Biomed Mater; 2013 Dec; 28():171-82. PubMed ID: 23994942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Review: Design from Beta Titanium Alloys to Medium-Entropy Alloys for Biomedical Applications.
    Wong KK; Hsu HC; Wu SC; Ho WF
    Materials (Basel); 2023 Nov; 16(21):. PubMed ID: 37959643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of alloying elements and annealing treatment on the microstructure and mechanical properties of Nb-Ta-Ti alloys fabricated by partial diffusion for biomedical applications.
    Liu J; Yang Q; Yin J; Yang H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110542. PubMed ID: 32204053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructure and mechanical properties of Ti-Zr-Cr biomedical alloys.
    Wang P; Feng Y; Liu F; Wu L; Guan S
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():148-52. PubMed ID: 25842119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of silicon content on the microstructure evolution, mechanical properties, and biocompatibility of β-type TiNbZrTa alloys fabricated by laser powder bed fusion.
    Luo X; Yang C; Li RY; Wang H; Lu HZ; Song T; Ma HW; Li DD; Gebert A; Li YY
    Biomater Adv; 2022 Feb; 133():112625. PubMed ID: 35523650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nb-Ti-Zr alloys for orthopedic implants.
    Zhang T; Ou P; Ruan J; Yang H
    J Biomater Appl; 2021 May; 35(10):1284-1293. PubMed ID: 33148099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of zirconium content on the microstructure, mechanical properties, and biocompatibility of in-situ alloying Ti-Nb-Ta based β alloys processed by selective laser melting.
    Kong W; Cox SC; Lu Y; Villapun V; Xiao X; Ma W; Liu M; Attallah MM
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112486. PubMed ID: 34857272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.