These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 36061652)
1. Nanomaterials and Technology Applications for Hydraulic Fracturing of Unconventional Oil and Gas Reservoirs: A State-of-the-Art Review of Recent Advances and Perspectives. Mao Z; Cheng L; Liu D; Li T; Zhao J; Yang Q ACS Omega; 2022 Aug; 7(34):29543-29570. PubMed ID: 36061652 [TBL] [Abstract][Full Text] [Related]
2. Influence Factors of Multifunctional Viscous Drag Reducers and Their Optimization for Unconventional Oil and Gas Reservoirs. Zhang Y; Zhou F; Liu Y ACS Omega; 2021 Nov; 6(47):32101-32108. PubMed ID: 34870031 [TBL] [Abstract][Full Text] [Related]
3. Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. Al-Hajri S; Negash BM; Rahman MM; Haroun M; Al-Shami TM ACS Omega; 2022 Mar; 7(9):7431-7443. PubMed ID: 35284754 [TBL] [Abstract][Full Text] [Related]
4. Study of gas production from shale reservoirs with multi-stage hydraulic fracturing horizontal well considering multiple transport mechanisms. Guo C; Wei M; Liu H PLoS One; 2018; 13(1):e0188480. PubMed ID: 29320489 [TBL] [Abstract][Full Text] [Related]
5. Investigation of Fracturing Fluid Flowback in Hydraulically Fractured Formations Based on Microscopic Visualization Experiments. Zou G; Pan B; Zhu W; Liu Y; Ma S; Liu M Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987341 [TBL] [Abstract][Full Text] [Related]
6. Hydrochemistry, Sources and Management of Fracturing Flowback Fluid in Tight Sandstone Gasfield in Sulige Gasfield (China). Shi H; He X; Zhou C; Wang L; Xiao Y Arch Environ Contam Toxicol; 2023 Feb; 84(2):284-298. PubMed ID: 36737498 [TBL] [Abstract][Full Text] [Related]
7. Chemical and Reactive Transport Processes Associated with Hydraulic Fracturing of Unconventional Oil/Gas Shales. Jew AD; Druhan JL; Ihme M; Kovscek AR; Battiato I; Kaszuba JP; Bargar JR; Brown GE Chem Rev; 2022 May; 122(9):9198-9263. PubMed ID: 35404590 [TBL] [Abstract][Full Text] [Related]
8. Chemical and Physical Architecture of Macromolecular Gels for Fracturing Fluid Applications in the Oil and Gas Industry; Current Status, Challenges, and Prospects. Khan M Gels; 2024 May; 10(5):. PubMed ID: 38786255 [TBL] [Abstract][Full Text] [Related]
9. Optimization of tight gas reservoir fracturing parameters via gradient boosting regression modeling. Yang H; Liu X; Chu X; Xie B; Zhu G; Li H; Yang J Heliyon; 2024 Mar; 10(5):e27015. PubMed ID: 38463839 [TBL] [Abstract][Full Text] [Related]
10. Application of Endothermic Fluids to Lower the Breakdown Pressure of Unconventional Reservoirs: Implications for Hydraulic Fracturing. Khan F; Mahmoud M; Raza A; AlTammar MJ; Patil S; Murtaza M; Kamal MS ACS Omega; 2024 Sep; 9(35):37253-37264. PubMed ID: 39246478 [TBL] [Abstract][Full Text] [Related]
11. Experimental analysis of multiple factors on hydraulic fracturing in coalbed methane reservoirs. Zhang F; Ma G; Liu X; Tao Y; Feng D; Li R PLoS One; 2018; 13(4):e0195363. PubMed ID: 29621295 [TBL] [Abstract][Full Text] [Related]
12. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport. Reagan MT; Moridis GJ; Keen ND; Johnson JN Water Resour Res; 2015 Apr; 51(4):2543-2573. PubMed ID: 26726274 [TBL] [Abstract][Full Text] [Related]
13. Quantity of flowback and produced waters from unconventional oil and gas exploration. Kondash AJ; Albright E; Vengosh A Sci Total Environ; 2017 Jan; 574():314-321. PubMed ID: 27639468 [TBL] [Abstract][Full Text] [Related]
14. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs. Su Y; Ren L; Meng F; Xu C; Wang W PLoS One; 2015; 10(5):e0125319. PubMed ID: 25966285 [TBL] [Abstract][Full Text] [Related]
15. Influence of Hydraulic Fracturing on Overlying Aquifers in the Presence of Leaky Abandoned Wells. Brownlow JW; James SC; Yelderman JC Ground Water; 2016 Nov; 54(6):781-792. PubMed ID: 27144719 [TBL] [Abstract][Full Text] [Related]
16. The intensification of the water footprint of hydraulic fracturing. Kondash AJ; Lauer NE; Vengosh A Sci Adv; 2018 Aug; 4(8):eaar5982. PubMed ID: 30116777 [TBL] [Abstract][Full Text] [Related]
17. Machine Learning-Based Accelerated Approaches to Infer Breakdown Pressure of Several Unconventional Rock Types. Tariq Z; Yan B; Sun S; Gudala M; Aljawad MS; Murtaza M; Mahmoud M ACS Omega; 2022 Nov; 7(45):41314-41330. PubMed ID: 36406508 [TBL] [Abstract][Full Text] [Related]
18. Smart magnetic markers use in hydraulic fracturing. Zawadzki J; Bogacki J Chemosphere; 2016 Nov; 162():23-30. PubMed ID: 27475294 [TBL] [Abstract][Full Text] [Related]
19. Comparison of chemical-use between hydraulic fracturing, acidizing, and routine oil and gas development. Stringfellow WT; Camarillo MK; Domen JK; Shonkoff SBC PLoS One; 2017; 12(4):e0175344. PubMed ID: 28422971 [TBL] [Abstract][Full Text] [Related]
20. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells. Taherdangkoo R; Tatomir A; Anighoro T; Sauter M J Contam Hydrol; 2019 Feb; 221():58-68. PubMed ID: 30679092 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]