These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36062355)

  • 21. Stick-slip dynamics in the forced wetting of polymer brushes.
    Greve D; Hartmann S; Thiele U
    Soft Matter; 2023 Jun; 19(22):4041-4061. PubMed ID: 37227162
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamic wetting and spreading and the role of topography.
    McHale G; Newton MI; Shirtcliffe NJ
    J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adsorption of polymers on a brush: Tuning the order of the wetting phase transition.
    Macdowell LG; Müller M
    J Chem Phys; 2006 Feb; 124(8):084907. PubMed ID: 16512742
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modeling of Wetting Transition of Liquid Metals on Organic Liquid Surfaces.
    Ni E; Li T; Ruan Y; Ma Y; Wang Y; Jiang Y; Li H
    Langmuir; 2021 Aug; 37(31):9429-9438. PubMed ID: 34320320
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Factors controlling the pinning force of liquid droplets on liquid infused surfaces.
    Sadullah MS; Panter JR; Kusumaatmaja H
    Soft Matter; 2020 Sep; 16(35):8114-8121. PubMed ID: 32734997
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size-dependent contact angle and the wetting and drying transition of a droplet adsorbed onto a spherical substrate: Line-tension effect.
    Iwamatsu M
    Phys Rev E; 2016 Oct; 94(4-1):042803. PubMed ID: 27841462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pressure Anisotropy in Polymer Brushes and Its Effects on Wetting.
    Veldscholte LB; Snoeijer JH; den Otter WK; de Beer S
    Langmuir; 2024 Feb; 40(8):4401-4409. PubMed ID: 38358950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Numerical and experimental investigation of static wetting morphologies of aqueous drops on lubricated slippery surfaces using a quasi-static approach.
    Gupta S; Bhatt B; Sharma M; Khare K
    Soft Matter; 2023 Feb; 19(6):1164-1173. PubMed ID: 36637154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Droplet Mobility on Slippery Lubricant Impregnated and Superhydrophobic Surfaces under the Effect of Air Shear Flow.
    Yeganehdoust F; Amer A; Sharifi N; Karimfazli I; Dolatabadi A
    Langmuir; 2021 May; 37(20):6278-6291. PubMed ID: 33978432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of line tension on droplets in the submicrometer range.
    Heim LO; Bonaccurso E
    Langmuir; 2013 Nov; 29(46):14147-53. PubMed ID: 24156499
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size dependent influence of contact line pinning on wetting of nano-textured/patterned silica surfaces.
    Ozcelik HG; Satiroglu E; Barisik M
    Nanoscale; 2020 Oct; 12(41):21376-21391. PubMed ID: 33078810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaporation dynamics of pure and binary mixture drops on dry and lubricant coated slippery surfaces.
    Sharma M; Mondal SS; Roy PK; Khare K
    J Colloid Interface Sci; 2020 Jun; 569():244-253. PubMed ID: 32114103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Liquid and Droplet Transport in Brush-Coated Cylindrical Nanochannels: Brush-Assisted Droplet Formation.
    Pastorino C; Müller M
    J Phys Chem B; 2021 Jan; 125(1):442-449. PubMed ID: 33400523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Controllable Wetting Transitions on Photoswitchable Physical Gels.
    Nekoonam N; Vera G; Goralczyk A; Mayoussi F; Zhu P; Böcherer D; Shakeel A; Helmer D
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27234-27242. PubMed ID: 37217181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drop transport and positioning on lubricant-impregnated surfaces.
    Hui Guan J; Ruiz-Gutiérrez É; Xu BB; Wood D; McHale G; Ledesma-Aguilar R; George Wells G
    Soft Matter; 2017 May; 13(18):3404-3410. PubMed ID: 28429011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolving the Apparent Line Tension of Sessile Droplets and Understanding its Sign Change at a Critical Wetting Angle.
    Zhao B; Luo S; Bonaccurso E; Auernhammer GK; Deng X; Li Z; Chen L
    Phys Rev Lett; 2019 Aug; 123(9):094501. PubMed ID: 31524463
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Line tension of sessile droplets: Thermodynamic considerations.
    Zhang H; Wang F; Nestler B
    Phys Rev E; 2023 Nov; 108(5-1):054121. PubMed ID: 38115470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the Atmosphere on the Wettability of Polymer Brushes.
    Schubotz S; Besford QA; Nazari S; Uhlmann P; Bittrich E; Sommer JU; Auernhammer GK
    Langmuir; 2023 Apr; 39(14):4872-4880. PubMed ID: 36995334
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wetting on physically patterned solid surfaces: the relevance of molecular dynamics simulations to macroscopic systems.
    Shahraz A; Borhan A; Fichthorn KA
    Langmuir; 2013 Sep; 29(37):11632-9. PubMed ID: 23952673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shape of a sessile drop on a flat surface covered with a liquid film.
    Tress M; Karpitschka S; Papadopoulos P; Snoeijer JH; Vollmer D; Butt HJ
    Soft Matter; 2017 May; 13(20):3760-3767. PubMed ID: 28470269
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.