These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36062526)

  • 1. Apoplastic and vascular defences.
    Darino M; Kanyuka K; Hammond-Kosack KE
    Essays Biochem; 2022 Sep; 66(5):595-605. PubMed ID: 36062526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity.
    Godson A; van der Hoorn RAL
    J Exp Bot; 2021 Apr; 72(9):3381-3394. PubMed ID: 33462613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Apoplastic immunity and its suppression by filamentous plant pathogens.
    Doehlemann G; Hemetsberger C
    New Phytol; 2013 Jun; 198(4):1001-1016. PubMed ID: 23594392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apoplastic Proteases: Powerful Weapons against Pathogen Infection in Plants.
    Wang Y; Wang Y; Wang Y
    Plant Commun; 2020 Jul; 1(4):100085. PubMed ID: 33367249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection.
    Wang Y; Wang Y
    Mol Plant Microbe Interact; 2018 Jan; 31(1):6-12. PubMed ID: 29090656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speaking the language of lipids: the cross-talk between plants and pathogens in defence and disease.
    Cavaco AR; Matos AR; Figueiredo A
    Cell Mol Life Sci; 2021 May; 78(9):4399-4415. PubMed ID: 33638652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant cells under siege: plant immune system versus pathogen effectors.
    Asai S; Shirasu K
    Curr Opin Plant Biol; 2015 Dec; 28():1-8. PubMed ID: 26343014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extracellular niche establishment by plant pathogens.
    Roussin-Léveillée C; Mackey D; Ekanayake G; Gohmann R; Moffett P
    Nat Rev Microbiol; 2024 Jun; 22(6):360-372. PubMed ID: 38191847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Apoplast: A Key Player in Plant Survival.
    Farvardin A; González-Hernández AI; Llorens E; García-Agustín P; Scalschi L; Vicedo B
    Antioxidants (Basel); 2020 Jul; 9(7):. PubMed ID: 32664231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Thioredoxin GbNRX1 Plays a Crucial Role in Homeostasis of Apoplastic Reactive Oxygen Species in Response to Verticillium dahliae Infection in Cotton.
    Li YB; Han LB; Wang HY; Zhang J; Sun ST; Feng DQ; Yang CL; Sun YD; Zhong NQ; Xia GX
    Plant Physiol; 2016 Apr; 170(4):2392-406. PubMed ID: 26869704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of a Trichoderma reesei β-1,4 endo-xylanase in tall fescue modifies cell wall structure and digestibility and elicits pathogen defence responses.
    Buanafina MM; Langdon T; Dalton S; Morris P
    Planta; 2012 Dec; 236(6):1757-74. PubMed ID: 22878642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The apoplast and its significance for plant mineral nutrition.
    Sattelmacher B
    New Phytol; 2001 Feb; 149(2):167-192. PubMed ID: 33874640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncovering plant-pathogen crosstalk through apoplastic proteomic studies.
    Delaunois B; Jeandet P; Clément C; Baillieul F; Dorey S; Cordelier S
    Front Plant Sci; 2014; 5():249. PubMed ID: 24917874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pathogenic infection and the oxidative defences in plant apoplast.
    Bolwell PP; Page A; Piślewska M; Wojtaszek P
    Protoplasma; 2001; 217(1-3):20-32. PubMed ID: 11732333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cleavage of a pathogen apoplastic protein by plant subtilases activates host immunity.
    Wang S; Xing R; Wang Y; Shu H; Fu S; Huang J; Paulus JK; Schuster M; Saunders DGO; Win J; Vleeshouwers V; Wang Y; Zheng X; van der Hoorn RAL; Dong S
    New Phytol; 2021 Mar; 229(6):3424-3439. PubMed ID: 33251609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light acclimation, retrograde signalling, cell death and immune defences in plants.
    Karpiński S; Szechyńska-Hebda M; Wituszyńska W; Burdiak P
    Plant Cell Environ; 2013 Apr; 36(4):736-44. PubMed ID: 23046215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein elicitor GP1pro targets aquaporin NbPIP2;4 to activate plant immunity.
    Yubo S; Xingyu R; Wenhui G; Yong W; He Y; Lirong H; Juntao F
    Plant Cell Environ; 2023 Aug; 46(8):2575-2589. PubMed ID: 37264560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A clubroot pathogen effector targets cruciferous cysteine proteases to suppress plant immunity.
    Pérez-López E; Hossain MM; Wei Y; Todd CD; Bonham-Smith PC
    Virulence; 2021 Dec; 12(1):2327-2340. PubMed ID: 34515618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant Aquaporin AtPIP1;4 Links Apoplastic H2O2 Induction to Disease Immunity Pathways.
    Tian S; Wang X; Li P; Wang H; Ji H; Xie J; Qiu Q; Shen D; Dong H
    Plant Physiol; 2016 Jul; 171(3):1635-50. PubMed ID: 26945050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile effectors of phytopathogenic fungi target host immunity.
    Tariqjaveed M; Mateen A; Wang S; Qiu S; Zheng X; Zhang J; Bhadauria V; Sun W
    J Integr Plant Biol; 2021 Nov; 63(11):1856-1873. PubMed ID: 34383388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.