These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36062918)

  • 21. Headspace analyses using multi-capillary column-ion mobility spectrometry allow rapid pathogen differentiation in hospital-acquired pneumonia relevant bacteria.
    Kunze-Szikszay N; Euler M; Kuhns M; Thieß M; Groß U; Quintel M; Perl T
    BMC Microbiol; 2021 Feb; 21(1):69. PubMed ID: 33641676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria.
    Jünger M; Vautz W; Kuhns M; Hofmann L; Ulbricht S; Baumbach JI; Quintel M; Perl T
    Appl Microbiol Biotechnol; 2012 Mar; 93(6):2603-14. PubMed ID: 22327321
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Volatile organic compounds as disease predictors in newborn infants: a systematic review.
    Course C; Watkins WJ; Müller CT; Odd D; Kotecha S; Chakraborty M
    J Breath Res; 2021 Feb; 15(2):. PubMed ID: 33530065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of Listeria using exogenous volatile organic compound metabolites and their detection by static headspace-multi-capillary column-gas chromatography-ion mobility spectrometry (SHS-MCC-GC-IMS).
    Taylor C; Lough F; Stanforth SP; Schwalbe EC; Fowlis IA; Dean JR
    Anal Bioanal Chem; 2017 Jul; 409(17):4247-4256. PubMed ID: 28484808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of the respirator on volatile organic compounds: an animal study in rats over 24 hours.
    Albrecht FW; Hüppe T; Fink T; Maurer F; Wolf A; Wolf B; Volk T; Baumbach JI; Kreuer S
    J Breath Res; 2015 Mar; 9(1):016007. PubMed ID: 25749729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Colorectal cancer and adenoma screening using urinary volatile organic compound (VOC) detection: early results from a single-centre bowel screening population (UK BCSP).
    Mozdiak E; Wicaksono AN; Covington JA; Arasaradnam RP
    Tech Coloproctol; 2019 Apr; 23(4):343-351. PubMed ID: 30989415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fecal Volatile Organic Compound Profiles are Not Influenced by Gestational Age and Mode of Delivery: A Longitudinal Multicenter Cohort Study.
    Deianova N; El Manouni El Hassani S; Niemarkt HJ; Cossey V; van Kaam AH; Jenken F; van Weissenbruch MM; Doedes EM; Baelde K; Menezes R; Benninga MA; de Jonge WJ; de Boer NK; de Meij TG
    Biosensors (Basel); 2020 May; 10(5):. PubMed ID: 32403393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Assessment of Fecal Volatile Organic Compounds in Healthy Infants: Electronic Nose Device Predicts Patient Demographics and Microbial Enterotype.
    Hosfield BD; Pecoraro AR; Baxter NT; Hawkins TB; Markel TA
    J Surg Res; 2020 Oct; 254():340-347. PubMed ID: 32526503
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous determination of aromatic and chlorinated compounds in urine of exposed workers by dynamic headspace and gas chromatography coupled to mass spectrometry (dHS-GC-MS).
    Erb A; Marsan P; Burgart M; Remy A; Lambert-Xolin AM; Jeandel F; Hanser O; Robert A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Sep; 1125():121724. PubMed ID: 31352201
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva.
    Amann A; Costello Bde L; Miekisch W; Schubert J; Buszewski B; Pleil J; Ratcliffe N; Risby T
    J Breath Res; 2014 Sep; 8(3):034001. PubMed ID: 24946087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimized Sampling Conditions for Fecal Volatile Organic Compound Analysis by Means of Field Asymmetric Ion Mobility Spectrometry.
    Bosch S; El Manouni El Hassani S; Covington JA; Wicaksono AN; Bomers MK; Benninga MA; Mulder CJJ; de Boer NKH; de Meij TGJ
    Anal Chem; 2018 Jul; 90(13):7972-7981. PubMed ID: 29860824
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Detection of mycobacteria by volatile organic compound analysis of invitro cultures using differential ion mobility spectrometry.
    Purkhart R; Becher G; Reinhold P; Köhler HU
    J Med Microbiol; 2017 Mar; 66(3):276-285. PubMed ID: 27995864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.
    Boots AW; Smolinska A; van Berkel JJ; Fijten RR; Stobberingh EE; Boumans ML; Moonen EJ; Wouters EF; Dallinga JW; Van Schooten FJ
    J Breath Res; 2014 Jun; 8(2):027106. PubMed ID: 24737039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds.
    Chan DK; Leggett CL; Wang KK
    World J Gastroenterol; 2016 Jan; 22(4):1639-49. PubMed ID: 26819529
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chronic intestinal Mycobacteria infection: discrimination via VOC analysis in exhaled breath and headspace of feces using differential ion mobility spectrometry.
    Purkhart R; Köhler H; Liebler-Tenorio E; Meyer M; Becher G; Kikowatz A; Reinhold P
    J Breath Res; 2011 Jun; 5(2):027103. PubMed ID: 21512209
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of characteristic metabolites of Aspergillus fumigatus and Candida species using ion mobility spectrometry-metabolic profiling by volatile organic compounds.
    Perl T; Jünger M; Vautz W; Nolte J; Kuhns M; Borg-von Zepelin M; Quintel M
    Mycoses; 2011 Nov; 54(6):e828-37. PubMed ID: 21668516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pre-analytical and analytical variables that influence urinary volatile organic compound measurements.
    McFarlanE M; MozdiaK E; Daulton E; Arasaradnam R; Covington J; Nwokolo C
    PLoS One; 2020; 15(7):e0236591. PubMed ID: 32735600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of volatile organic compounds in muscle tissues of different species based on Headspace-Gas-Chromatography Ion-Mobility spectrometry.
    Li XB; Guo CH; Qi YH; Lu WH; Xu GT; Wang BY; Zhang DB; Zhao SP; Ding MX
    Leg Med (Tokyo); 2022 Nov; 59():102132. PubMed ID: 35952617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. National secular trends in ambient air volatile organic compound levels and biomarkers of exposure in the United States.
    Konkle SL; Zierold KM; Taylor KC; Riggs DW; Bhatnagar A
    Environ Res; 2020 Mar; 182():108991. PubMed ID: 31835113
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detection and validation of volatile metabolic patterns over different strains of two human pathogenic bacteria during their growth in a complex medium using multi-capillary column-ion mobility spectrometry (MCC-IMS).
    Kunze N; Göpel J; Kuhns M; Jünger M; Quintel M; Perl T
    Appl Microbiol Biotechnol; 2013 Apr; 97(8):3665-76. PubMed ID: 23467822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.