These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Biomechanical duality of fracture healing captured using virtual mechanical testing and validated in ovine bones. Inglis B; Schwarzenberg P; Klein K; von Rechenberg B; Darwiche S; Dailey HL Sci Rep; 2022 Feb; 12(1):2492. PubMed ID: 35169187 [TBL] [Abstract][Full Text] [Related]
4. Virtual mechanical tests out-perform morphometric measures for assessment of mechanical stability of fracture healing in vivo. Schwarzenberg P; Klein K; Ferguson SJ; von Rechenberg B; Darwiche S; Dailey HL J Orthop Res; 2021 Apr; 39(4):727-738. PubMed ID: 32970350 [TBL] [Abstract][Full Text] [Related]
5. Finite element analysis of trabecular bone microstructure using CT imaging and continuum mechanical modeling. Guha I; Zhang X; Rajapakse CS; Chang G; Saha PK Med Phys; 2022 Jun; 49(6):3886-3899. PubMed ID: 35319784 [TBL] [Abstract][Full Text] [Related]
6. Non-invasive prediction of the mouse tibia mechanical properties from microCT images: comparison between different finite element models. Oliviero S; Roberts M; Owen R; Reilly GC; Bellantuono I; Dall'Ara E Biomech Model Mechanobiol; 2021 Jun; 20(3):941-955. PubMed ID: 33523337 [TBL] [Abstract][Full Text] [Related]
7. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures. Pakdel A; Fialkov J; Whyne CM J Biomech; 2016 Jun; 49(9):1454-1460. PubMed ID: 27033728 [TBL] [Abstract][Full Text] [Related]
8. Computed-tomography-based finite-element models of long bones can accurately capture strain response to bending and torsion. Varghese B; Short D; Penmetsa R; Goswami T; Hangartner T J Biomech; 2011 Apr; 44(7):1374-9. PubMed ID: 21288523 [TBL] [Abstract][Full Text] [Related]
9. Nondestructive Assessment of Growing Rat Tibial Mechanical Properties Under Three-Point Bending: A Microcomputed Tomography Based Finite Element Study. Zimmermann Y; Mustafy T; Villemure I J Biomech Eng; 2020 Dec; 142(12):. PubMed ID: 32747943 [TBL] [Abstract][Full Text] [Related]
11. Validation of finite element models of the mouse tibia using digital volume correlation. Oliviero S; Giorgi M; Dall'Ara E J Mech Behav Biomed Mater; 2018 Oct; 86():172-184. PubMed ID: 29986291 [TBL] [Abstract][Full Text] [Related]
12. Unified validation of a refined second-generation HR-pQCT based homogenized finite element method to predict strength of the distal segments in radius and tibia. Schenk D; Indermaur M; Simon M; Voumard B; Varga P; Pretterklieber M; Lippuner K; Zysset P J Mech Behav Biomed Mater; 2022 Jul; 131():105235. PubMed ID: 35588681 [TBL] [Abstract][Full Text] [Related]
13. Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques. Ulrich D; van Rietbergen B; Weinans H; Rüegsegger P J Biomech; 1998 Dec; 31(12):1187-92. PubMed ID: 9882053 [TBL] [Abstract][Full Text] [Related]
14. Integrating micro CT indices, CT imaging and computational modelling to assess the mechanical performance of fluoride treated bone. Sreenivasan D; Watson M; Callon K; Dray M; Das R; Grey A; Cornish J; Fernandez J Med Eng Phys; 2013 Dec; 35(12):1793-800. PubMed ID: 23993994 [TBL] [Abstract][Full Text] [Related]
15. An exclusion approach for addressing partial volume artifacts with quantititive computed tomography-based finite element modeling of the proximal tibia. Kalajahi SMH; Nazemi SM; Johnston JD Med Eng Phys; 2020 Feb; 76():95-100. PubMed ID: 31870545 [TBL] [Abstract][Full Text] [Related]
16. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. Marcián P; Borák L; Zikmund T; Horáčková L; Kaiser J; Joukal M; Wolff J J Mech Behav Biomed Mater; 2021 May; 117():104393. PubMed ID: 33647729 [TBL] [Abstract][Full Text] [Related]
17. Application of the Johnson-Cook plasticity model in the finite element simulations of the nanoindentation of the cortical bone. Remache D; Semaan M; Rossi JM; Pithioux M; Milan JL J Mech Behav Biomed Mater; 2020 Jan; 101():103426. PubMed ID: 31557661 [TBL] [Abstract][Full Text] [Related]
18. Independent changes in bone mineralized and marrow soft tissues following acute knee injury require dual-energy or high-resolution computed tomography for accurate assessment of bone mineral density and stiffness. de Bakker CMJ; Knowles NK; Walker REA; Manske SL; Boyd SK J Mech Behav Biomed Mater; 2022 Mar; 127():105091. PubMed ID: 35065447 [TBL] [Abstract][Full Text] [Related]
19. A novel specimen-specific methodology to optimise the alignment of long bones for experimental testing. Cheong VS; Bull AM J Biomech; 2015 Dec; 48(16):4317-21. PubMed ID: 26522623 [TBL] [Abstract][Full Text] [Related]
20. Development of a validated glenoid trabecular density-modulus relationship. Knowles NK; G Langohr GD; Faieghi M; Nelson A; Ferreira LM J Mech Behav Biomed Mater; 2019 Feb; 90():140-145. PubMed ID: 30366304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]