These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36063319)

  • 1. Implementation of 3D Multi-Color Fluorescence Microscopy in a Quadruple Trap Optical Tweezers System.
    Meijering AEC; Bakx JAM; Man T; Heller I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2022; 2478():75-100. PubMed ID: 36063319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution "Fleezers": Dual-Trap Optical Tweezers Combined with Single-Molecule Fluorescence Detection.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Mol Biol; 2017; 1486():183-256. PubMed ID: 27844430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Resolution Optical Tweezers Combined With Single-Molecule Confocal Microscopy.
    Whitley KD; Comstock MJ; Chemla YR
    Methods Enzymol; 2017; 582():137-169. PubMed ID: 28062033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent Advances in Biological Single-Molecule Applications of Optical Tweezers and Fluorescence Microscopy.
    Hashemi Shabestari M; Meijering AEC; Roos WH; Wuite GJL; Peterman EJG
    Methods Enzymol; 2017; 582():85-119. PubMed ID: 28062046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile Quadruple-Trap Optical Tweezers for Dual DNA Experiments.
    Heller I; Laurens N; Vorselen D; Broekmans OD; Biebricher AS; King GA; Brouwer I; Wuite GJL; Peterman EJG
    Methods Mol Biol; 2017; 1486():257-272. PubMed ID: 27844431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Introduction to Optical Tweezers: Background, System Designs, and Applications.
    Malinowska AM; van Mameren J; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2024; 2694():3-28. PubMed ID: 37823997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Optical Tweezers Combined with Multicolor Single-Molecule Microscopy.
    Yadav R; Senanayake KB; Comstock MJ
    Methods Mol Biol; 2022; 2478():141-240. PubMed ID: 36063322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing DNA-DNA Interactions with a Combination of Quadruple-Trap Optical Tweezers and Microfluidics.
    Brouwer I; King GA; Heller I; Biebricher AS; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2017; 1486():275-293. PubMed ID: 27844432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Introduction to Optical Tweezers: Background, System Designs, and Commercial Solutions.
    van Mameren J; Wuite GJL; Heller I
    Methods Mol Biol; 2018; 1665():3-23. PubMed ID: 28940061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-Molecular Applications of Recent Developments in Optical Tweezers.
    Choudhary D; Mossa A; Jadhav M; Cecconi C
    Biomolecules; 2019 Jan; 9(1):. PubMed ID: 30641944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy.
    Sirinakis G; Ren Y; Gao Y; Xi Z; Zhang Y
    Rev Sci Instrum; 2012 Sep; 83(9):093708. PubMed ID: 23020384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Dimensional STED Microscopy in Optical Tweezers.
    Man T; Geldhof JJ; Peterman EJG; Wuite GJL; Heller I
    Methods Mol Biol; 2022; 2478():101-122. PubMed ID: 36063320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Negatively Supercoiled DNA Using Dual-Trap Optical Tweezers.
    King GA; Spakman D; Peterman EJG; Wuite GJL
    Methods Mol Biol; 2022; 2478():243-272. PubMed ID: 36063323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction and calibration of an optical trap on a fluorescence optical microscope.
    Lee WM; Reece PJ; Marchington RF; Metzger NK; Dholakia K
    Nat Protoc; 2007; 2(12):3226-38. PubMed ID: 18079723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards biological applications of nanophotonic tweezers.
    Badman RP; Ye F; Wang MD
    Curr Opin Chem Biol; 2019 Dec; 53():158-166. PubMed ID: 31678712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection.
    Ott D; Nader S; Reihani S; Oddershede LB
    Opt Express; 2014 Sep; 22(19):23661-72. PubMed ID: 25321832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the Optical Trapping of a Single Virus by Quantum Dots Tagging Increases Virus Polarizability and Trap Stiffness.
    Xu D; Li J; Liu L; Tang H
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):55174-55182. PubMed ID: 37966372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments.
    Landry MP; McCall PM; Qi Z; Chemla YR
    Biophys J; 2009 Oct; 97(8):2128-36. PubMed ID: 19843445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subwavelength optical trapping with a fiber-based surface plasmonic lens.
    Liu Y; Stief F; Yu M
    Opt Lett; 2013 Mar; 38(5):721-3. PubMed ID: 23455277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of an optical trap for study of host-pathogen interactions for dynamic live cell imaging.
    Tam JM; Castro CE; Heath RJ; Mansour MK; Cardenas ML; Xavier RJ; Lang MJ; Vyas JM
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21841755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.