These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36063400)
1. End-of-Shift Monitoring of Respirable Crystalline Silica: A Critical Review of Measurement Techniques and Factors Influencing Accurate Measurements. Noi DDT; Davies B; Gopaldasani V Crit Rev Anal Chem; 2024; 54(6):1492-1501. PubMed ID: 36063400 [TBL] [Abstract][Full Text] [Related]
2. Performance Comparison of Four Portable FTIR Instruments for Direct-on-Filter Measurement of Respirable Crystalline Silica. Ashley EL; Cauda E; Chubb LG; Tuchman DP; Rubinstein EN Ann Work Expo Health; 2020 Jun; 64(5):536-546. PubMed ID: 32266371 [TBL] [Abstract][Full Text] [Related]
3. Multicomponent Measurement of Respirable Quartz, Kaolinite and Coal Dust using Fourier Transform Infrared Spectroscopy (FTIR): A Comparison Between Partial Least Squares and Principal Component Regressions. Stacey P; Clegg F; Sammon C Ann Work Expo Health; 2022 Jun; 66(5):644-655. PubMed ID: 34595523 [TBL] [Abstract][Full Text] [Related]
4. Promoting early exposure monitoring for respirable crystalline silica: Taking the laboratory to the mine site. Cauda E; Miller A; Drake P J Occup Environ Hyg; 2016; 13(3):D39-45. PubMed ID: 26558490 [TBL] [Abstract][Full Text] [Related]
5. A comparison of respirable crystalline silica concentration measurements using a direct-on-filter Fourier transform infrared (FT-IR) transmission method vs. a traditional laboratory X-ray diffraction method. Hart JF; Autenrieth DA; Cauda E; Chubb L; Spear TM; Wock S; Rosenthal S J Occup Environ Hyg; 2018 Oct; 15(10):743-754. PubMed ID: 29985762 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of PVC and PTFE filters for direct-on-filter crystalline silica quantification by FTIR. Osho B; Elahifard M; Wang X; Abbasi B; Chow JC; Watson JG; Arnott WP; Reed WR; Parks D J Occup Environ Hyg; 2024 Aug; 21(8):539-550. PubMed ID: 38958555 [TBL] [Abstract][Full Text] [Related]
7. Monitoring Worker Exposure to Respirable Crystalline Silica: Application for Data-driven Predictive Modeling for End-of-Shift Exposure Assessment. Wolfe C; Chubb L; Walker R; Yekich M; Cauda E Ann Work Expo Health; 2022 Oct; 66(8):1010-1021. PubMed ID: 35716068 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of on-tool shrouds for controlling respirable crystalline silica in restoration stone work. Healy CB; Coggins MA; Van Tongeren M; MacCalman L; McGowan P Ann Occup Hyg; 2014 Nov; 58(9):1155-67. PubMed ID: 25261456 [TBL] [Abstract][Full Text] [Related]
9. Personal respirable dust and respirable crystalline silica exposure in two shafts and a concentrator of a Zambian copper mine. Sifanu M; Kalebaila KK; Hayumbu P; Nabiwa L; Linde SJL Ann Work Expo Health; 2024 Mar; 68(3):269-279. PubMed ID: 38206108 [TBL] [Abstract][Full Text] [Related]
10. How accurately and consistently do laboratories measure workplace concentrations of respirable crystalline silica? Cox LA Regul Toxicol Pharmacol; 2016 Nov; 81():268-274. PubMed ID: 27620965 [TBL] [Abstract][Full Text] [Related]
11. Determination and Prediction of Respirable Dust and Crystalline-Free Silica in the Taiwanese Foundry Industry. Kuo CT; Chiu FF; Bao BY; Chang TY Int J Environ Res Public Health; 2018 Sep; 15(10):. PubMed ID: 30257469 [No Abstract] [Full Text] [Related]
12. Artificial Neural Networks (ANNs) and Partial Least Squares (PLS) Regression in the Quantitative Analysis of Respirable Crystalline Silica by Fourier-Transform Infrared Spectroscopy (FTIR). Salehi M; Zare A; Taheri A Ann Work Expo Health; 2021 Apr; 65(3):346-357. PubMed ID: 33095851 [TBL] [Abstract][Full Text] [Related]
13. Occupational Exposures in an Equestrian Centre to Respirable Dust and Respirable Crystalline Silica. Bulfin K; Cowie H; Galea KS; Connolly A; Coggins MA Int J Environ Res Public Health; 2019 Sep; 16(17):. PubMed ID: 31484444 [TBL] [Abstract][Full Text] [Related]
14. Characterization of Occupational Exposures to Respirable Silica and Dust in Demolition, Crushing, and Chipping Activities. Bello A; Mugford C; Murray A; Shepherd S; Woskie SR Ann Work Expo Health; 2019 Jan; 63(1):34-44. PubMed ID: 30379992 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the Analysis of Respirable Crystalline Silica in Workplace Air by Direct-on-Filter Methods using X-ray Diffraction and Fourier Transform Infrared Spectroscopy. Ichikawa A; Volpato J; O'Donnell GE; Mazereeuw M Ann Work Expo Health; 2022 Jun; 66(5):632-643. PubMed ID: 34718400 [TBL] [Abstract][Full Text] [Related]
16. Field evaluation of an engineering control for respirable crystalline silica exposures during mortar removal. Collingwood S; Heitbrink WA J Occup Environ Hyg; 2007 Nov; 4(11):875-87. PubMed ID: 17917951 [TBL] [Abstract][Full Text] [Related]
17. Occupational exposure to respirable crystalline silica among US metal and nonmetal miners, 2000-2019. Misra S; Sussell AL; Wilson SE; Poplin GS Am J Ind Med; 2023 Mar; 66(3):199-212. PubMed ID: 36705259 [TBL] [Abstract][Full Text] [Related]
18. Exposure to Respirable Crystalline Silica in the GB Brick Manufacturing and Stone Working Industries. Baldwin PEJ; Yates T; Beattie H; Keen C; Warren N Ann Work Expo Health; 2019 Feb; 63(2):184-196. PubMed ID: 30624605 [TBL] [Abstract][Full Text] [Related]
19. An indirect Raman spectroscopy method for the quantitative measurement of respirable crystalline silica collected on filters inside respiratory equipment. Stacey P; Clegg F; Morton J; Sammon C Anal Methods; 2020 Jun; 12(21):2757-2771. PubMed ID: 32930307 [TBL] [Abstract][Full Text] [Related]
20. Exposure to respirable crystalline silica in the construction industry-do we have a problem? McLean D; Glass B; 't Mannetje A; Douwes J N Z Med J; 2017 Dec; 130(1466):78-82. PubMed ID: 29197904 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]