BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 36063454)

  • 21. SOMDE: a scalable method for identifying spatially variable genes with self-organizing map.
    Hao M; Hua K; Zhang X
    Bioinformatics; 2021 Dec; 37(23):4392-4398. PubMed ID: 34165490
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NITUMID: Nonnegative matrix factorization-based Immune-TUmor MIcroenvironment Deconvolution.
    Tang D; Park S; Zhao H
    Bioinformatics; 2020 Mar; 36(5):1344-1350. PubMed ID: 31593244
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchical analysis of RNA-seq reads improves the accuracy of allele-specific expression.
    Raghupathy N; Choi K; Vincent MJ; Beane GL; Sheppard KS; Munger SC; Korstanje R; Pardo-Manual de Villena F; Churchill GA
    Bioinformatics; 2018 Jul; 34(13):2177-2184. PubMed ID: 29444201
    [TBL] [Abstract][Full Text] [Related]  

  • 24. BEM: Mining Coregulation Patterns in Transcriptomics via Boolean Matrix Factorization.
    Liang L; Zhu K; Lu S
    Bioinformatics; 2020 Jul; 36(13):4030-4037. PubMed ID: 31913438
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SpaceX: gene co-expression network estimation for spatial transcriptomics.
    Acharyya S; Zhou X; Baladandayuthapani V
    Bioinformatics; 2022 Nov; 38(22):5033-5041. PubMed ID: 36179087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data.
    Ahlmann-Eltze C; Huber W
    Bioinformatics; 2021 Apr; 36(24):5701-5702. PubMed ID: 33295604
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing heterogeneity in spatial data using the HTA index with applications to spatial transcriptomics and imaging.
    Levy-Jurgenson A; Tekpli X; Yakhini Z
    Bioinformatics; 2021 Nov; 37(21):3796-3804. PubMed ID: 34358288
    [TBL] [Abstract][Full Text] [Related]  

  • 28. schex avoids overplotting for large single-cell RNA-sequencing datasets.
    Freytag S; Lister R
    Bioinformatics; 2020 Apr; 36(7):2291-2292. PubMed ID: 31794001
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ST Pipeline: an automated pipeline for spatial mapping of unique transcripts.
    Navarro JF; Sjöstrand J; Salmén F; Lundeberg J; Ståhl PL
    Bioinformatics; 2017 Aug; 33(16):2591-2593. PubMed ID: 28398467
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CiteFuse enables multi-modal analysis of CITE-seq data.
    Kim HJ; Lin Y; Geddes TA; Yang JYH; Yang P
    Bioinformatics; 2020 Aug; 36(14):4137-4143. PubMed ID: 32353146
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of cell-type-specific spatially variable genes accounting for excess zeros.
    Yu J; Luo X
    Bioinformatics; 2022 Sep; 38(17):4135-4144. PubMed ID: 35792822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powerful differential expression analysis incorporating network topology for next-generation sequencing data.
    Dona MSI; Prendergast LA; Mathivanan S; Keerthikumar S; Salim A
    Bioinformatics; 2017 May; 33(10):1505-1513. PubMed ID: 28172447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identifying signaling genes in spatial single-cell expression data.
    Li D; Ding J; Bar-Joseph Z
    Bioinformatics; 2021 May; 37(7):968-975. PubMed ID: 32886099
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
    Zhu K; Anastassiou D
    Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustering spatial transcriptomics data.
    Teng H; Yuan Y; Bar-Joseph Z
    Bioinformatics; 2022 Jan; 38(4):997-1004. PubMed ID: 34623423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data.
    Macnair W; Gupta R; Claassen M
    Bioinformatics; 2022 Jun; 38(Suppl 1):i290-i298. PubMed ID: 35758781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SPsimSeq: semi-parametric simulation of bulk and single-cell RNA-sequencing data.
    Assefa AT; Vandesompele J; Thas O
    Bioinformatics; 2020 May; 36(10):3276-3278. PubMed ID: 32065619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A machine learning-based method for automatically identifying novel cells in annotating single-cell RNA-seq data.
    Li Z; Wang Y; Ganan-Gomez I; Colla S; Do KA
    Bioinformatics; 2022 Oct; 38(21):4885-4892. PubMed ID: 36083008
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-Cell Expression Variability Implies Cell Function.
    Osorio D; Yu X; Zhong Y; Li G; Yu P; Serpedin E; Huang JZ; Cai JJ
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.