BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

575 related articles for article (PubMed ID: 36063455)

  • 1. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. scGCL: an imputation method for scRNA-seq data based on graph contrastive learning.
    Xiong Z; Luo J; Shi W; Liu Y; Xu Z; Wang B
    Bioinformatics; 2023 Mar; 39(3):. PubMed ID: 36825817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GTAD: a graph-based approach for cell spatial composition inference from integrated scRNA-seq and ST-seq data.
    Zhang T; Zhang Z; Li L; Dong B; Wang G; Zhang D
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38127088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. stPlus: a reference-based method for the accurate enhancement of spatial transcriptomics.
    Shengquan C; Boheng Z; Xiaoyang C; Xuegong Z; Rui J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i299-i307. PubMed ID: 34252941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scPNMF: sparse gene encoding of single cells to facilitate gene selection for targeted gene profiling.
    Song D; Li K; Hemminger Z; Wollman R; Li JJ
    Bioinformatics; 2021 Jul; 37(Suppl_1):i358-i366. PubMed ID: 34252925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SpatialPrompt: spatially aware scalable and accurate tool for spot deconvolution and domain identification in spatial transcriptomics.
    Swain AK; Pandit V; Sharma J; Yadav P
    Commun Biol; 2024 May; 7(1):639. PubMed ID: 38796505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning.
    Tu JJ; Li HS; Yan H; Zhang XF
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36610709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GE-Impute: graph embedding-based imputation for single-cell RNA-seq data.
    Wu X; Zhou Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35901457
    [TBL] [Abstract][Full Text] [Related]  

  • 11. stVAE deconvolves cell-type composition in large-scale cellular resolution spatial transcriptomics.
    Li C; Chan TF; Yang C; Lin Z
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37862237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaeda computationally annotates doublets in single-cell RNA sequencing data.
    Schriever H; Kostka D
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36342203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data.
    Miller BF; Huang F; Atta L; Sahoo A; Fan J
    Nat Commun; 2022 Apr; 13(1):2339. PubMed ID: 35487922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic cell/domain-type assignment of spatial transcriptomics data with SpatialAnno.
    Shi X; Yang Y; Ma X; Zhou Y; Guo Z; Wang C; Liu J
    Nucleic Acids Res; 2023 Dec; 51(22):e115. PubMed ID: 37941153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.
    Chen C; Leung YY; Ionita M; Wang LS; Li M
    Bioinformatics; 2022 Sep; 38(19):4530-4536. PubMed ID: 35980155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive comparison on cell-type composition inference for spatial transcriptomics data.
    Chen J; Liu W; Luo T; Yu Z; Jiang M; Wen J; Gupta GP; Giusti P; Zhu H; Yang Y; Li Y
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35753702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel graph-based k-partitioning approach improves the detection of gene-gene correlations by single-cell RNA sequencing.
    Xu H; Hu Y; Zhang X; Aouizerat BE; Yan C; Xu K
    BMC Genomics; 2022 Jan; 23(1):35. PubMed ID: 34996359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics.
    Sang-Aram C; Browaeys R; Seurinck R; Saeys Y
    Elife; 2024 May; 12():. PubMed ID: 38787371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DSTG: deconvoluting spatial transcriptomics data through graph-based artificial intelligence.
    Song Q; Su J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33480403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GNN-based embedding for clustering scRNA-seq data.
    Ciortan M; Defrance M
    Bioinformatics; 2022 Jan; 38(4):1037-1044. PubMed ID: 34850828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.