These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 36063518)

  • 1. Data-Based and Opportunistic Integral Concurrent Learning for Adaptive Trajectory Tracking During Switched FES-Induced Biceps Curls.
    Allen BC; Stubbs KJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2557-2566. PubMed ID: 36063518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Joint angle based motor point tracking stimulation for surface FES: A Study on biceps brachii.
    Ichikawa K; Jiang Y; Sugi M; Togo S; Yokoi H
    Med Eng Phys; 2021 Feb; 88():9-18. PubMed ID: 33485518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
    Molazadeh V; Zhang Q; Bao X; Sharma N
    IEEE Trans Control Syst Technol; 2022 May; 30(3):1021-1036. PubMed ID: 36249864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position and torque control via rehabilitation robot and functional electrical stimulation.
    Cousin CA; Rouse CA; Duenas VH; Dixon WE
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():38-43. PubMed ID: 28813790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis.
    Kirsch NA; Bao X; Alibeji NA; Dicianno BE; Sharma N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):224-232. PubMed ID: 28952946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive Cooperative Control for Hybrid FES-Robotic Upper Limb Devices: a Simulation Study.
    Bardi E; Dalla Gasperina S; Pedrocchi A; Ambrosini E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6398-6401. PubMed ID: 34892576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.
    Sampson P; Freeman C; Coote S; Demain S; Feys P; Meadmore K; Hughes AM
    IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):235-48. PubMed ID: 25823038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
    Zhang D; Ren Y; Gui K; Jia J; Xu W
    Front Neurosci; 2017; 11():725. PubMed ID: 29311798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning.
    Molazadeh V; Zhang Q; Bao X; Dicianno BE; Sharma N
    Front Robot AI; 2021; 8():711388. PubMed ID: 34805288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Time-Varying Nature of Electromechanical Delay During FES-Cycling.
    Allen BC; Stubbs KJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2020 Oct; 28(10):2236-2245. PubMed ID: 32804654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Person-Specific Muscle Fatigue Characteristics to Optimally Allocate Control in a Hybrid Exoskeleton - Preliminary Results.
    Bao X; Molazadeh V; Dodson A; Dicianno BE; Sharma N
    IEEE Trans Med Robot Bionics; 2020 May; 2(2):226-235. PubMed ID: 32661511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Elbow Flexion and Stimulation Site on Neuromuscular Electrical Stimulation of the Biceps Brachii.
    Gonzalez EJ; Downey RJ; Rouse CA; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):904-910. PubMed ID: 29641395
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.
    Hara Y
    J Nippon Med Sch; 2008 Feb; 75(1):4-14. PubMed ID: 18360073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-Time Closed-Loop Functional Electrical Stimulation Control of Muscle Activation with Evoked Electromyography Feedback for Spinal Cord Injured Patients.
    Li Z; Guiraud D; Andreu D; Gelis A; Fattal C; Hayashibe M
    Int J Neural Syst; 2018 Aug; 28(6):1750063. PubMed ID: 29378445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation.
    Stewart A; Pretty C; Chen X
    BMC Biomed Eng; 2019; 1():30. PubMed ID: 32903348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A decentralized adaptive fuzzy robust strategy for control of upright standing posture in paraplegia using functional electrical stimulation.
    Kobravi HR; Erfanian A
    Med Eng Phys; 2012 Jan; 34(1):28-37. PubMed ID: 21764350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upper Limb Rehabilitation Robot Powered by PAMs Cooperates with FES Arrays to Realize Reach-to-Grasp Trainings.
    Tu X; Han H; Huang J; Li J; Su C; Jiang X; He J
    J Healthc Eng; 2017; 2017():1282934. PubMed ID: 29065566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton.
    Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.