BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36063520)

  • 1. TNN: Tree Neural Network for Airway Anatomical Labeling.
    Yu W; Zheng H; Gu Y; Xie F; Yang J; Sun J; Yang GZ
    IEEE Trans Med Imaging; 2023 Jan; 42(1):103-118. PubMed ID: 36063520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypergraph Isomorphism Computation.
    Feng Y; Han J; Ying S; Gao Y
    IEEE Trans Pattern Anal Mach Intell; 2024 May; 46(5):3880-3896. PubMed ID: 38215323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.
    Meng Q; Kitasaka T; Nimura Y; Oda M; Ueno J; Mori K
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):245-261. PubMed ID: 27796791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic weighted hypergraph convolutional network for brain functional connectome analysis.
    Wang J; Li H; Qu G; Cecil KM; Dillman JR; Parikh NA; He L
    Med Image Anal; 2023 Jul; 87():102828. PubMed ID: 37130507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated anatomical labeling of a topologically variant abdominal arterial system via probabilistic hypergraph matching.
    Liu Y; Wang X; Wu Z; López-Linares K; Macía I; Ru X; Zhao H; González Ballester MA; Zhang C
    Med Image Anal; 2022 Jan; 75():102249. PubMed ID: 34743037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Tubule-Sensitive CNNs for Pulmonary Airway and Artery-Vein Segmentation in CT.
    Qin Y; Zheng H; Gu Y; Huang X; Yang J; Wang L; Yao F; Zhu YM; Yang GZ
    IEEE Trans Med Imaging; 2021 Jun; 40(6):1603-1617. PubMed ID: 33635786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graph-Based Region and Boundary Aggregation for Biomedical Image Segmentation.
    Meng Y; Zhang H; Zhao Y; Yang X; Qiao Y; MacCormick IJC; Huang X; Zheng Y
    IEEE Trans Med Imaging; 2022 Mar; 41(3):690-701. PubMed ID: 34714742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hierarchical graph representations in digital pathology.
    Pati P; Jaume G; Foncubierta-Rodríguez A; Feroce F; Anniciello AM; Scognamiglio G; Brancati N; Fiche M; Dubruc E; Riccio D; Di Bonito M; De Pietro G; Botti G; Thiran JP; Frucci M; Goksel O; Gabrani M
    Med Image Anal; 2022 Jan; 75():102264. PubMed ID: 34781160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical Labeling of Human Airway Branches using a Novel Two-Step Machine Learning and Hierarchical Features.
    Nadeem SA; Hoffman EA; Comellas AP; Saha PK
    Proc SPIE Int Soc Opt Eng; 2020 Feb; 11313():. PubMed ID: 34267414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fine-Grained Image Classification and Detection Method Based on Convolutional Neural Network Fused with Attention Mechanism.
    Zhang Y
    Comput Intell Neurosci; 2022; 2022():2974960. PubMed ID: 36156953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain graph super-resolution using adversarial graph neural network with application to functional brain connectivity.
    Isallari M; Rekik I
    Med Image Anal; 2021 Jul; 71():102084. PubMed ID: 33971574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-perspective region-based CNNs for vertebrae labeling in intraoperative long-length images.
    Huang Y; Jones CK; Zhang X; Johnston A; Waktola S; Aygun N; Witham TF; Bydon A; Theodore N; Helm PA; Siewerdsen JH; Uneri A
    Comput Methods Programs Biomed; 2022 Dec; 227():107222. PubMed ID: 36370597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steganographer detection via a similarity accumulation graph convolutional network.
    Zhang Z; Zheng M; Zhong SH; Liu Y
    Neural Netw; 2021 Apr; 136():97-111. PubMed ID: 33472131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coarse-to-fine airway segmentation using multi information fusion network and CNN-based region growing.
    Guo J; Fu R; Pan L; Zheng S; Huang L; Zheng B; He B
    Comput Methods Programs Biomed; 2022 Mar; 215():106610. PubMed ID: 35077902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated anatomical labeling of the bronchial branch and its application to the virtual bronchoscopy system.
    Mori K; Hasegawa J; Suenaga Y; Toriwaki J
    IEEE Trans Med Imaging; 2000 Feb; 19(2):103-14. PubMed ID: 10784282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GraphRegNet: Deep Graph Regularisation Networks on Sparse Keypoints for Dense Registration of 3D Lung CTs.
    Hansen L; Heinrich MP
    IEEE Trans Med Imaging; 2021 Sep; 40(9):2246-2257. PubMed ID: 33872144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning Cascade Attention for fine-grained image classification.
    Zhu Y; Li R; Yang Y; Ye N
    Neural Netw; 2020 Feb; 122():174-182. PubMed ID: 31683145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DCACNet: Dual context aggregation and attention-guided cross deconvolution network for medical image segmentation.
    Lu H; Tian S; Yu L; Liu L; Cheng J; Wu W; Kang X; Zhang D
    Comput Methods Programs Biomed; 2022 Feb; 214():106566. PubMed ID: 34890992
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT.
    Zhang T; Wang K; Cui H; Jin Q; Cheng P; Nakaguchi T; Li C; Ning Z; Wang L; Xuan P
    Phys Med Biol; 2023 Jan; 68(2):. PubMed ID: 36625358
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.