These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36063634)

  • 41. Dynamical Model for the Counteracting Effects of Trimethylamine
    Teng X; Ichiye T
    J Phys Chem B; 2020 Mar; 124(10):1978-1986. PubMed ID: 32059113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The accumulation of methylamine counteracting solutes in elasmobranchs with differing levels of urea: a comparison of marine and freshwater species.
    Treberg JR; Speers-Roesch B; Piermarini PM; Ip YK; Ballantyne JS; Driedzic WR
    J Exp Biol; 2006 Mar; 209(Pt 5):860-70. PubMed ID: 16481575
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer.
    Xia Z; Lau BLT
    J Colloid Interface Sci; 2020 May; 568():1-7. PubMed ID: 32070850
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of cosolvents on the hydration of carbon nanotubes.
    Yang L; Gao YQ
    J Am Chem Soc; 2010 Jan; 132(2):842-8. PubMed ID: 20030390
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of osmolytes on hexokinase kinetics combined with macromolecular crowding: test of the osmolyte compatibility hypothesis towards crowded systems.
    Olsen SN; Ramløv H; Westh P
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Oct; 148(2):339-45. PubMed ID: 17581767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. TMAO: Protecting proteins from feeling the heat.
    Boob MM; Sukenik S; Gruebele M; Pogorelov TV
    Biophys J; 2023 Apr; 122(7):1414-1422. PubMed ID: 36916005
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of urea and trimethylamine-N-oxide on the properties of water and the secondary structure of hen egg white lysozyme.
    Panuszko A; Bruździak P; Zielkiewicz J; Wyrzykowski D; Stangret J
    J Phys Chem B; 2009 Nov; 113(44):14797-809. PubMed ID: 19813739
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interaction of Zwitterionic Osmolyte Trimethylamine
    Roy S; Patra A; Palit DK; Mondal JA
    J Phys Chem B; 2021 Oct; 125(39):10939-10946. PubMed ID: 34570979
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TMAO and urea in the hydration shell of the protein SNase.
    Smolin N; Voloshin VP; Anikeenko AV; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2017 Mar; 19(9):6345-6357. PubMed ID: 28116386
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Measuring the interaction of urea and protein-stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose.
    Stanley C; Rau DC
    Biochemistry; 2008 Jun; 47(25):6711-8. PubMed ID: 18512956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of urea and trimethylamine-N-oxide on hydrophobic interactions.
    Paul S; Patey GN
    J Phys Chem B; 2007 Jul; 111(28):7932-3. PubMed ID: 17580863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structure and interaction in aqueous urea-trimethylamine-N-oxide solutions.
    Paul S; Patey GN
    J Am Chem Soc; 2007 Apr; 129(14):4476-82. PubMed ID: 17373796
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A unique piezolyte mechanism of TMAO: Hydrophobic interactions under extreme pressure conditions.
    Folberth A; van der Vegt NFA
    J Chem Phys; 2022 Nov; 157(20):201101. PubMed ID: 36456238
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperature induced change of TMAO effects on hydrophobic hydration.
    Folberth A; van der Vegt NFA
    J Chem Phys; 2022 May; 156(18):184501. PubMed ID: 35568566
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The molecular mechanism of stabilization of proteins by TMAO and its ability to counteract the effects of urea.
    Zou Q; Bennion BJ; Daggett V; Murphy KP
    J Am Chem Soc; 2002 Feb; 124(7):1192-202. PubMed ID: 11841287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural methylamine osmolytes, trimethylamine N-oxide and betaine, increase tau-induced polymerization of microtubules.
    Tseng HC; Graves DJ
    Biochem Biophys Res Commun; 1998 Sep; 250(3):726-30. PubMed ID: 9784413
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The protein-stabilizing effects of TMAO in aqueous and non-aqueous conditions.
    Monhemi H; Hoang HN; Standley DM; Matsuda T; Housaindokht MR
    Phys Chem Chem Phys; 2022 Sep; 24(35):21178-21187. PubMed ID: 36039911
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Persistent homology analysis of osmolyte molecular aggregation and their hydrogen-bonding networks.
    Xia K; Anand DV; Shikhar S; Mu Y
    Phys Chem Chem Phys; 2019 Oct; 21(37):21038-21048. PubMed ID: 31528920
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of osmolytes on pressure-induced unfolding of proteins: a high-pressure SAXS study.
    Krywka C; Sternemann C; Paulus M; Tolan M; Royer C; Winter R
    Chemphyschem; 2008 Dec; 9(18):2809-15. PubMed ID: 18924198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.