These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 3606364)

  • 1. Motor learning: nonspecific subcortical mechanisms in rats.
    Thompson R; Huestis PW; Yu J
    Arch Phys Med Rehabil; 1987 Jul; 68(7):419-22. PubMed ID: 3606364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deficits in response inhibition and attention in rats rendered mentally retarded by early subcortical brain damage.
    Thompson R; Harmon D; Yu J
    Dev Psychobiol; 1985 Nov; 18(6):483-99. PubMed ID: 4092837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic mechanisms underlying acquisition of latch-box problems in the white rat.
    Thompson R; Gallardo K; Yu J
    Acta Neurobiol Exp (Wars); 1984; 44(3):105-20. PubMed ID: 6485897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of generalized learning deficit and permanent growth stunting by bilateral brain stem lesions.
    Mosier HD; Jansons RA; Thompson R; Crinella FM; Yu J
    Pediatr Res; 1990 Feb; 27(2):181-5. PubMed ID: 2314948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain mechanisms underlying motor skill learning in the rat.
    Thompson R; Huestis PW; Crinella FM; Yu J
    Am J Phys Med Rehabil; 1990 Aug; 69(4):191-7. PubMed ID: 2383379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional (14C) 2-deoxyglucose uptake during vibrissae movements evoked by rat motor cortex stimulation.
    Sharp FR; Evans K
    J Comp Neurol; 1982 Jul; 208(3):255-87. PubMed ID: 7119161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning deficits in rats with early neurotoxic lesions to the globus pallidus, substantia nigra, median raphe or pontine reticular formation.
    Thompson R; Gibbs RB; Ristic GA; Cotman CW; Yu J
    Physiol Behav; 1986; 37(1):141-51. PubMed ID: 3737712
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor learning in man: a review of functional and clinical studies.
    Halsband U; Lange RK
    J Physiol Paris; 2006 Jun; 99(4-6):414-24. PubMed ID: 16730432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossed connections of the substantia nigra in the rat.
    Gerfen CR; Staines WA; Arbuthnott GW; Fibiger HC
    J Comp Neurol; 1982 May; 207(3):283-303. PubMed ID: 7107988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in brain activation during the acquisition of a new bimanual coodination task.
    Debaere F; Wenderoth N; Sunaert S; Van Hecke P; Swinnen SP
    Neuropsychologia; 2004; 42(7):855-67. PubMed ID: 14998701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity of cortical networks involved in bimanual motor sequence learning.
    Sun FT; Miller LM; Rao AA; D'Esposito M
    Cereb Cortex; 2007 May; 17(5):1227-34. PubMed ID: 16855008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The indirect amygdala-dorsal striatum pathway mediates conditioned freezing: insights on emotional memory networks.
    Ferreira TL; Shammah-Lagnado SJ; Bueno OF; Moreira KM; Fornari RV; Oliveira MG
    Neuroscience; 2008 Apr; 153(1):84-94. PubMed ID: 18367339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connections of a motor cortical region in zebra finches: relation to pathways for vocal learning.
    Bottjer SW; Brady JD; Cribbs B
    J Comp Neurol; 2000 May; 420(2):244-60. PubMed ID: 10753310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facilitation of motor skill learning by callosal denervation or forced forelimb use in adult rats.
    Bury SD; Jones TA
    Behav Brain Res; 2004 Apr; 150(1-2):43-53. PubMed ID: 15033278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-sensitive enhancement of motor learning with the less-affected forelimb after unilateral sensorimotor cortex lesions in rats.
    Hsu JE; Jones TA
    Eur J Neurosci; 2005 Oct; 22(8):2069-80. PubMed ID: 16262644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning ability in young rats with single and double lesions to the "general learning system".
    Yu J; Thompson R; Huestis PW; Bjelajac VM; Crinella FM
    Physiol Behav; 1989 Jan; 45(1):133-44. PubMed ID: 2727127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of motor skill and instrumental learning time scales in a skilled reaching task in rat.
    Buitrago MM; Ringer T; Schulz JB; Dichgans J; Luft AR
    Behav Brain Res; 2004 Dec; 155(2):249-56. PubMed ID: 15364484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep improves sequential motor learning and performance in patients with prefrontal lobe lesions.
    Gomez Beldarrain M; Astorgano AG; Gonzalez AB; Garcia-Monco JC
    Clin Neurol Neurosurg; 2008 Mar; 110(3):245-52. PubMed ID: 18155352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attempt-dependent decrease in skilled reaching characterizes the acute postsurgical period following a forelimb motor cortex lesion: an experimental demonstration of learned nonuse in the rat.
    Erickson CA; Gharbawie OA; Whishaw IQ
    Behav Brain Res; 2007 May; 179(2):208-18. PubMed ID: 17346809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensorimotor skill learning in amnesia: additional evidence for the neural basis of nondeclarative memory.
    Tranel D; Damasio AR; Damasio H; Brandt JP
    Learn Mem; 1994; 1(3):165-79. PubMed ID: 10467594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.