These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 36063695)
1. A novel landslide susceptibility optimization framework to assess landslide occurrence probability at the regional scale for environmental management. Sun X; Yuan L; Tao S; Liu M; Li D; Zhou Y; Shao H J Environ Manage; 2022 Nov; 322():116108. PubMed ID: 36063695 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China). Wang Y; Sun D; Wen H; Zhang H; Zhang F Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618 [TBL] [Abstract][Full Text] [Related]
3. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China. Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874 [TBL] [Abstract][Full Text] [Related]
4. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
5. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison. Huang Z; Peng L; Li S; Liu Y; Zhou S Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134 [TBL] [Abstract][Full Text] [Related]
6. Landslide Susceptibility Mapping by Fusing Convolutional Neural Networks and Vision Transformer. Bao S; Liu J; Wang L; Konečný M; Che X; Xu S; Li P Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616685 [TBL] [Abstract][Full Text] [Related]
7. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology. Saha A; Tripathi L; Villuri VGK; Bhardwaj A Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087 [TBL] [Abstract][Full Text] [Related]
8. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique. Hussain MA; Chen Z; Zheng Y; Shoaib M; Shah SU; Ali N; Afzal Z Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590807 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
10. Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study. Li L; Lan H Int J Environ Res Public Health; 2020 Nov; 17(21):. PubMed ID: 33139639 [TBL] [Abstract][Full Text] [Related]
11. Selecting optimal conditioning parameters for landslide susceptibility: an experimental research on Aqabat Al-Sulbat, Saudi Arabia. Alqadhi S; Mallick J; Talukdar S; Bindajam AA; Van Hong N; Saha TK Environ Sci Pollut Res Int; 2022 Jan; 29(3):3743-3762. PubMed ID: 34389958 [TBL] [Abstract][Full Text] [Related]
12. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Dou J; Yunus AP; Tien Bui D; Merghadi A; Sahana M; Zhu Z; Chen CW; Khosravi K; Yang Y; Pham BT Sci Total Environ; 2019 Apr; 662():332-346. PubMed ID: 30690368 [TBL] [Abstract][Full Text] [Related]
13. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. Zhang J; Ma X; Zhang J; Sun D; Zhou X; Mi C; Wen H J Environ Manage; 2023 Apr; 332():117357. PubMed ID: 36731409 [TBL] [Abstract][Full Text] [Related]
14. Research on landslide susceptibility prediction model based on LSTM-RF-MDBN. Yang X; Fan X; Wang K; Zhou Z Environ Sci Pollut Res Int; 2024 Jan; 31(1):1504-1516. PubMed ID: 38041734 [TBL] [Abstract][Full Text] [Related]
15. Improving ML-based landslide susceptibility using ensemble method for sample selection: a case study of Kangra district in Himachal Pradesh, India. Singh A; Dhiman N; K C N; Shukla DP Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39223412 [TBL] [Abstract][Full Text] [Related]
16. Application of Bagging, Boosting and Stacking Ensemble and EasyEnsemble Methods for Landslide Susceptibility Mapping in the Three Gorges Reservoir Area of China. Wu X; Wang J Int J Environ Res Public Health; 2023 Mar; 20(6):. PubMed ID: 36981886 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of landslides susceptibility in Southeastern Tibet considering seismic sensitivity. Yeqi Z; Yonggang G; Guowen W; Shengjie W Heliyon; 2024 Sep; 10(18):e36800. PubMed ID: 39309935 [TBL] [Abstract][Full Text] [Related]
18. Ensemble of fuzzy-analytical hierarchy process in landslide susceptibility modeling from a humid tropical region of Western Ghats, Southern India. Gopinath G; Jesiya N; Achu AL; Bhadran A; Surendran UP Environ Sci Pollut Res Int; 2024 Jun; 31(29):41370-41387. PubMed ID: 37156952 [TBL] [Abstract][Full Text] [Related]
19. Study on landslide susceptibility mapping with different factor screening methods and random forest models. Gu T; Li J; Wang M; Duan P; Zhang Y; Cheng L PLoS One; 2023; 18(10):e0292897. PubMed ID: 37824559 [TBL] [Abstract][Full Text] [Related]
20. Game-theoretic optimization of landslide susceptibility mapping: a comparative study between Bayesian-optimized basic neural network and new generation neural network models. Mallick J; Alkahtani M; Hang HT; Singh CK Environ Sci Pollut Res Int; 2024 Apr; 31(20):29811-29835. PubMed ID: 38592629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]