These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36063788)

  • 1. Removal of single and dual ring thiophene's from dodecane using cavitation based processes.
    Delaney P; Sarvothaman VP; Colgan R; Nagarajan S; Deshmukh G; Rooney D; Robertson PKJ; Ranade VV
    Ultrason Sonochem; 2022 Sep; 89():106148. PubMed ID: 36063788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of Sulphur pollutants in model and real fuels using hydrodynamic cavitation.
    Delaney P; Sarvothaman VP; Nagarajan S; Rooney D; Robertson PKJ; Ranade VV
    Ultrason Sonochem; 2023 May; 95():106405. PubMed ID: 37084535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of pefloxacin by hybrid hydrodynamic cavitation with H
    Wang B; Jiao H; Su H; Wang T
    Chemosphere; 2022 Sep; 303(Pt 3):135299. PubMed ID: 35691401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The removal of Rhodamine B by H
    Wang K; Jin RY; Qiao YN; He ZD; Wang Y; Wang XJ
    Water Sci Technol; 2019 Oct; 80(8):1571-1580. PubMed ID: 31961819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodesulfurization of a system containing synthetic fuel using Rhodococcus erythropolis ATCC 4277.
    Maass D; de Oliveira D; de Souza AA; Souza SM
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2079-85. PubMed ID: 25163887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Non-catalytic Deep Desulphurization Process using Hydrodynamic Cavitation.
    Suryawanshi NB; Bhandari VM; Sorokhaibam LG; Ranade VV
    Sci Rep; 2016 Sep; 6():33021. PubMed ID: 27605492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L.
    Joshi SM; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():375-381. PubMed ID: 30563793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new simple protocol for the synthesis of nanohybrid catalyst for oxidative desulfurization of dibenzothiophene.
    Ghahramaninezhad M; Ahmadpour A
    Environ Sci Pollut Res Int; 2020 Feb; 27(4):4104-4114. PubMed ID: 31828713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantifying OH radical generation in hydrodynamic cavitation via coumarin dosimetry: Influence of operating parameters and cavitation devices.
    De-Nasri SJ; Sarvothaman VP; Nagarajan S; Manesiotis P; Robertson PKJ; Ranade VV
    Ultrason Sonochem; 2022 Nov; 90():106207. PubMed ID: 36335794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.
    Barik AJ; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):383-394. PubMed ID: 28946437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel approaches based on hydrodynamic cavitation for treatment of wastewater containing potassium thiocyanate.
    Jawale RH; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():214-223. PubMed ID: 30528210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent.
    Thanekar P; Gogate PR
    Ultrason Sonochem; 2019 May; 53():202-213. PubMed ID: 30686598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water.
    Čehovin M; Medic A; Scheideler J; Mielcke J; Ried A; Kompare B; Žgajnar Gotvajn A
    Ultrason Sonochem; 2017 Jul; 37():394-404. PubMed ID: 28427649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intensification of diesel oxidative desulfurization via hydrodynamic cavitation.
    Baradaran S; Sadeghi MT
    Ultrason Sonochem; 2019 Nov; 58():104698. PubMed ID: 31450290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jul; 37():192-202. PubMed ID: 28427623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
    Gore MM; Saharan VK; Pinjari DV; Chavan PV; Pandit AB
    Ultrason Sonochem; 2014 May; 21(3):1075-82. PubMed ID: 24360991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors.
    Chakinala AG; Gogate PR; Chand R; Bremner DH; Molina R; Burgess AE
    Ultrason Sonochem; 2008 Mar; 15(3):164-70. PubMed ID: 17481935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intensifying extraction of biomolecules from macroalgae using vortex based hydrodynamic cavitation device.
    Mittal R; Ranade VV
    Ultrason Sonochem; 2023 Mar; 94():106347. PubMed ID: 36870099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.