BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36063957)

  • 1. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds.
    Zhu C; Ji Y; Du X; Kong F; Chi Z; Zhao Y
    Sci Total Environ; 2022 Dec; 852():158515. PubMed ID: 36063957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A precise microalgae farming for CO
    Zhu C; Hu C; Wang J; Chen Y; Zhao Y; Chi Z
    Sci Total Environ; 2023 Nov; 901():166013. PubMed ID: 37541491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Water Depth on Microalgal Production, Biomass Harvest, and Energy Consumption in High Rate Algal Pond Using Municipal Wastewater.
    Kim BH; Choi JE; Cho K; Kang Z; Ramanan R; Moon DG; Kim HS
    J Microbiol Biotechnol; 2018 Apr; 28(4):630-637. PubMed ID: 29429325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Sensor Data Profile-Based Deep Learning Method Applied to Open Raceway Pond Microalgal Productivity Prediction.
    Igou T; Zhong S; Reid E; Chen Y
    Environ Sci Technol; 2023 Nov; 57(46):17981-17989. PubMed ID: 37234045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increased pond depth improves algal productivity and nutrient removal in wastewater treatment high rate algal ponds.
    Sutherland DL; Turnbull MH; Craggs RJ
    Water Res; 2014 Apr; 53():271-81. PubMed ID: 24530547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds.
    Raeisossadati M; Moheimani NR; Parlevliet D
    Bioresour Technol; 2019 Nov; 291():121801. PubMed ID: 31326685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.
    Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ
    Bioresour Technol; 2015 May; 184():222-229. PubMed ID: 25453429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Case study on the effect continuous CO
    Young P; Taylor MJ; Buchanan N; Lewis J; Fallowfield HJ
    J Environ Manage; 2019 Dec; 251():109614. PubMed ID: 31563600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of a raceway pond system for wastewater treatment: a review.
    Rayen F; Behnam T; Dominique P
    Crit Rev Biotechnol; 2019 May; 39(3):422-435. PubMed ID: 30744439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2015 May; 184():202-214. PubMed ID: 25465780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.
    Sutherland DL; Turnbull MH; Broady PA; Craggs RJ
    Water Res; 2014 Sep; 61():130-40. PubMed ID: 24911561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of primary treatment of wastewater in high rate algal pond systems: Biomass and bioenergy recovery.
    Arashiro LT; Ferrer I; Rousseau DPL; Van Hulle SWH; Garfí M
    Bioresour Technol; 2019 May; 280():27-36. PubMed ID: 30754003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Carbon Capture from a Power Plant with Semi-automated Open Raceway Ponds for Microalgae Cultivation.
    Acedo M; Gonzalez Cena JR; Kiehlbaugh KM; Ogden KL
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32865530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.
    Assemany PP; Calijuri ML; do Couto Ede A; Santiago AF; Dos Reis AJ
    Water Sci Technol; 2015; 71(8):1229-34. PubMed ID: 25909734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration.
    Couto E; Calijuri ML; Assemany P
    Sci Total Environ; 2020 Jul; 724():138104. PubMed ID: 32408433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production.
    Zhang Q; Yu Z; Zhu L; Ye T; Zuo J; Li X; Xiao B; Jin S
    Water Res; 2018 Aug; 139():144-157. PubMed ID: 29635151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.
    Costa TO; Calijuri ML; Avelar NV; Carneiro ACO; de Assis LR
    Environ Technol; 2017 Aug; 38(15):1926-1936. PubMed ID: 27666287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.
    Kang Z; Kim BH; Ramanan R; Choi JE; Yang JW; Oh HM; Kim HS
    J Microbiol Biotechnol; 2015 Jan; 25(1):109-18. PubMed ID: 25341470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pilot-scale cultivation of water-net in secondary effluent using an open pond raceway for nutrient removal and bioethanol production.
    Min KJ; Oh DY; Park KY
    Chemosphere; 2021 Aug; 277():130129. PubMed ID: 33774229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.