These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 36063957)

  • 21. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds.
    Zhu C; Ji Y; Du X; Kong F; Chi Z; Zhao Y
    Sci Total Environ; 2022 Dec; 852():158515. PubMed ID: 36063957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A precise microalgae farming for CO
    Zhu C; Hu C; Wang J; Chen Y; Zhao Y; Chi Z
    Sci Total Environ; 2023 Nov; 901():166013. PubMed ID: 37541491
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations.
    McGinn PJ; Dickinson KE; Bhatti S; Frigon JC; Guiot SR; O'Leary SJ
    Photosynth Res; 2011 Sep; 109(1-3):231-47. PubMed ID: 21461850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production.
    Sutherland DL; Howard-Williams C; Turnbull MH; Broady PA; Craggs RJ
    Bioresour Technol; 2015 May; 184():222-229. PubMed ID: 25453429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of a raceway pond system for wastewater treatment: a review.
    Rayen F; Behnam T; Dominique P
    Crit Rev Biotechnol; 2019 May; 39(3):422-435. PubMed ID: 30744439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.
    Mehrabadi A; Craggs R; Farid MM
    Bioresour Technol; 2015 May; 184():202-214. PubMed ID: 25465780
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Progress on the development of floating photobioreactor for microalgae cultivation and its application potential.
    Zhu C; Zhai X; Xi Y; Wang J; Kong F; Zhao Y; Chi Z
    World J Microbiol Biotechnol; 2019 Nov; 35(12):190. PubMed ID: 31754912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pollution prevention and waste phycoremediation by algal-based wastewater treatment technologies: The applications of high-rate algal ponds (HRAPs) and algal turf scrubber (ATS).
    Leong YK; Huang CY; Chang JS
    J Environ Manage; 2021 Oct; 296():113193. PubMed ID: 34237671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery - A review.
    Xu Z; Wang H; Cheng P; Chang T; Chen P; Zhou C; Ruan R
    Sci Total Environ; 2020 Dec; 746():141039. PubMed ID: 32750578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.
    Young P; Taylor M; Fallowfield HJ
    World J Microbiol Biotechnol; 2017 Jun; 33(6):117. PubMed ID: 28493156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving the feasibility of producing biofuels from microalgae using wastewater.
    Rawat I; Bhola V; Kumar RR; Bux F
    Environ Technol; 2013; 34(13-16):1765-75. PubMed ID: 24350433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photobioreactor configurations in cultivating microalgae biomass for biorefinery.
    Barboza-Rodríguez R; Rodríguez-Jasso RM; Rosero-Chasoy G; Rosales Aguado ML; Ruiz HA
    Bioresour Technol; 2024 Feb; 394():130208. PubMed ID: 38113947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strategies to control biological contaminants during microalgal cultivation in open ponds.
    Lam TP; Lee TM; Chen CY; Chang JS
    Bioresour Technol; 2018 Mar; 252():180-187. PubMed ID: 29306613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flotation: A promising microalgae harvesting and dewatering technology for biofuels production.
    Ndikubwimana T; Chang J; Xiao Z; Shao W; Zeng X; Ng IS; Lu Y
    Biotechnol J; 2016 Mar; 11(3):315-26. PubMed ID: 26928758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sustainable microalgal biomass valorization to bioenergy: Key challenges and future perspectives.
    Tawfik A; Ismail S; Elsayed M; Qyyum MA; Rehan M
    Chemosphere; 2022 Jun; 296():133812. PubMed ID: 35149012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery.
    Olguín EJ
    Biotechnol Adv; 2012; 30(5):1031-46. PubMed ID: 22609182
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends.
    Priya AK; Jalil AA; Vadivel S; Dutta K; Rajendran S; Fujii M; Soto-Moscoso M
    Chemosphere; 2022 Oct; 305():135375. PubMed ID: 35738200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Progress in microalgae culture system for biodiesel combined with reducing carbon dioxide emission].
    Su H; Zhou X; Xia X; Sun Z; Zhang Y
    Sheng Wu Gong Cheng Xue Bao; 2011 Sep; 27(9):1268-80. PubMed ID: 22117510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of computational fluid dynamics (CFD) on the raceway design for the cultivation of microalgae: a review.
    Kusmayadi A; Suyono EA; Nagarajan D; Chang JS; Yen HW
    J Ind Microbiol Biotechnol; 2020 May; 47(4-5):373-382. PubMed ID: 32240448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO
    Lu W; Asraful Alam M; Liu S; Xu J; Parra Saldivar R
    Sci Total Environ; 2020 May; 716():135247. PubMed ID: 31839294
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.