These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 36064181)
1. An odorant binding protein is involved in counteracting detection-avoidance and Toll-pathway innate immunity. Zhang W; Xie M; Eleftherianos I; Mohamed A; Cao Y; Song B; Zang LS; Jia C; Bian J; Keyhani NO; Xia Y J Adv Res; 2023 Jun; 48():1-16. PubMed ID: 36064181 [TBL] [Abstract][Full Text] [Related]
2. An insect chemosensory protein facilitates locust avoidance to fungal pathogens via recognition of fungal volatiles. Zheng R; Xie M; Keyhani NO; Xia Y Int J Biol Macromol; 2023 Dec; 253(Pt 6):127389. PubMed ID: 37827395 [TBL] [Abstract][Full Text] [Related]
3. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. Zheng R; Xia Y; Keyhani NO J Proteomics; 2021 Feb; 232():104050. PubMed ID: 33217581 [TBL] [Abstract][Full Text] [Related]
4. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis. Wang Y; Yang P; Cui F; Kang L PLoS Pathog; 2013 Jan; 9(1):e1003102. PubMed ID: 23326229 [TBL] [Abstract][Full Text] [Related]
5. Influence of Metarhizium anisopliae (IMI330189) and Mad1 protein on enzymatic activities and Toll-related genes of migratory locust. Abro NA; Wang G; Ullah H; Long GL; Hao K; Nong X; Cai N; Tu X; Zhang Z Environ Sci Pollut Res Int; 2019 Jun; 26(17):17797-17808. PubMed ID: 31037535 [TBL] [Abstract][Full Text] [Related]
6. HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum induces the immunity of its specialist host locust. Jiang ZY; Ligoxygakis P; Xia YX Int J Biol Macromol; 2020 Dec; 165(Pt A):1303-1311. PubMed ID: 33022346 [TBL] [Abstract][Full Text] [Related]
7. Inhibitor of apoptosis-1 gene as a potential target for pest control and its involvement in immune regulation during fungal infection. Zhang W; Keyhani NO; Zhang H; Cai K; Xia Y Pest Manag Sci; 2020 May; 76(5):1831-1840. PubMed ID: 31821720 [TBL] [Abstract][Full Text] [Related]
8. Interaction of entomopathogenic fungi with the host immune system. Qu S; Wang S Dev Comp Immunol; 2018 Jun; 83():96-103. PubMed ID: 29355579 [TBL] [Abstract][Full Text] [Related]
9. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. Zhang W; Chen X; Eleftherianos I; Mohamed A; Bastin A; Keyhani NO FEMS Microbiol Rev; 2024 Jan; 48(1):. PubMed ID: 38341280 [TBL] [Abstract][Full Text] [Related]
10. Interaction between Paranosema locustae and Metarhizium anisopliae var. acridum, two pathogens of the desert locust, Schistocerca gregaria under laboratory conditions. Tounou AK; Kooyman C; Douro-Kpindou OK; Poehling HM J Invertebr Pathol; 2008 Mar; 97(3):203-10. PubMed ID: 18005982 [TBL] [Abstract][Full Text] [Related]
11. Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Ouedraogo RM; Goettel MS; Brodeur J Oecologia; 2004 Jan; 138(2):312-9. PubMed ID: 14614620 [TBL] [Abstract][Full Text] [Related]
12. Developmental and transcriptional responses to host and nonhost cuticles by the specific locust pathogen Metarhizium anisopliae var. acridum. Wang C; St Leger RJ Eukaryot Cell; 2005 May; 4(5):937-47. PubMed ID: 15879528 [TBL] [Abstract][Full Text] [Related]
13. Odorant binding protein 18 increases the pathogen resistance of the imported willow leaf beetle, Rong H; He X; Liu Y; Liu M; Liu X; Lu M Front Cell Infect Microbiol; 2024; 14():1360680. PubMed ID: 38476166 [TBL] [Abstract][Full Text] [Related]
14. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. Zhang W; Chen J; Keyhani NO; Zhang Z; Li S; Xia Y BMC Genomics; 2015 Oct; 16():867. PubMed ID: 26503342 [TBL] [Abstract][Full Text] [Related]
15. Insect Immunity to Entomopathogenic Fungi. Lu HL; St Leger RJ Adv Genet; 2016; 94():251-85. PubMed ID: 27131327 [TBL] [Abstract][Full Text] [Related]
16. A method to construct cDNA library of the entomopathogenic fungus, Metarhizium anisopliae, in the hemolymph of the infected locust. Zhang C; Cao Y; Wang Z; Yin Y; Peng G; Xia Y Mol Biotechnol; 2007 May; 36(1):23-31. PubMed ID: 17827534 [TBL] [Abstract][Full Text] [Related]
17. Increasing Anthonomus grandis susceptibility to Metarhizium anisopliae through RNAi-induced AgraRelish knockdown: a perspective to combine biocontrol and biotechnology. Moreira-Pinto CE; Coelho RR; Leite AGB; Silveira DA; de Souza DA; Lopes RB; Macedo LLP; Silva MCM; Ribeiro TP; Morgante CV; Antonino JD; Grossi-de-Sa MF Pest Manag Sci; 2021 Sep; 77(9):4054-4063. PubMed ID: 33896113 [TBL] [Abstract][Full Text] [Related]
18. Symbiont-Mediated Protection of Bruner-Montero G; Wood M; Horn HA; Gemperline E; Li L; Currie CR mBio; 2021 Dec; 12(6):e0188521. PubMed ID: 34933458 [TBL] [Abstract][Full Text] [Related]
19. Spatial and temporal transcriptomic analyses reveal locust initiation of immune responses to Metarhizium acridum at the pre-penetration stage. Zhang W; Zheng X; Chen J; Keyhani NO; Cai K; Xia Y Dev Comp Immunol; 2020 Mar; 104():103524. PubMed ID: 31634520 [TBL] [Abstract][Full Text] [Related]
20. Immunity and survival response of Atta cephalotes (Hymenoptera: Myrmicinae) workers to Metarhizium anisopliae infection: Potential role of their associated microbiota. Valencia-Giraldo SM; Niño-Castro A; López-Peña A; Trejos-Vidal D; Correa-Bueno O; Montoya-Lerma J PLoS One; 2021; 16(2):e0247545. PubMed ID: 33626077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]