BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 36064711)

  • 1. Msx1
    Zhang X; Jiang W; Xie C; Wu X; Ren Q; Wang F; Shen X; Hong Y; Wu H; Liao Y; Zhang Y; Liang R; Sun W; Gu Y; Zhang T; Chen Y; Wei W; Zhang S; Zou W; Ouyang H
    Nat Commun; 2022 Sep; 13(1):5211. PubMed ID: 36064711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of an Engineered Hybrid Matrix for Bone Regeneration via Endochondral Ossification.
    Mikael PE; Golebiowska AA; Xin X; Rowe DW; Nukavarapu SP
    Ann Biomed Eng; 2020 Mar; 48(3):992-1005. PubMed ID: 31037444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Bone Tissue Engineering With an Endogenous Stem Cell Mobilizer and Osteoinductive Nanofibrous Polymeric Scaffolds.
    Lee JS; Jin Y; Park HJ; Yang K; Lee MS; Yang HS; Cho SW
    Biotechnol J; 2017 Dec; 12(12):. PubMed ID: 28925552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Undifferentiated human adipose-derived stromal/stem cells loaded onto wet-spun starch-polycaprolactone scaffolds enhance bone regeneration: nude mice calvarial defect in vivo study.
    Carvalho PP; Leonor IB; Smith BJ; Dias IR; Reis RL; Gimble JM; Gomes ME
    J Biomed Mater Res A; 2014 Sep; 102(9):3102-11. PubMed ID: 24123913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressing mesenchymal stem cell hypertrophy and endochondral ossification in 3D cartilage regeneration with nanofibrous poly(l-lactic acid) scaffold and matrilin-3.
    Liu Q; Wang J; Chen Y; Zhang Z; Saunders L; Schipani E; Chen Q; Ma PX
    Acta Biomater; 2018 Aug; 76():29-38. PubMed ID: 29940371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone regeneration in rat calvarial defects using dissociated or spheroid mesenchymal stromal cells in scaffold-hydrogel constructs.
    Shanbhag S; Suliman S; Mohamed-Ahmed S; Kampleitner C; Hassan MN; Heimel P; Dobsak T; Tangl S; Bolstad AI; Mustafa K
    Stem Cell Res Ther; 2021 Nov; 12(1):575. PubMed ID: 34776000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering.
    Park HJ; Yu SJ; Yang K; Jin Y; Cho AN; Kim J; Lee B; Yang HS; Im SG; Cho SW
    Biomaterials; 2014 Dec; 35(37):9811-9823. PubMed ID: 25241158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(3-hydroxybutyrate)/hydroxyapatite/alginate scaffolds seeded with mesenchymal stem cells enhance the regeneration of critical-sized bone defect.
    Volkov AV; Muraev AA; Zharkova II; Voinova VV; Akoulina EA; Zhuikov VA; Khaydapova DD; Chesnokova DV; Menshikh KA; Dudun AA; Makhina TK; Bonartseva GA; Asfarov TF; Stamboliev IA; Gazhva YV; Ryabova VM; Zlatev LH; Ivanov SY; Shaitan KV; Bonartsev AP
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110991. PubMed ID: 32994018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BMP2 genetically engineered MSCs and EPCs promote vascularized bone regeneration in rat critical-sized calvarial bone defects.
    He X; Dziak R; Yuan X; Mao K; Genco R; Swihart M; Sarkar D; Li C; Wang C; Lu L; Andreadis S; Yang S
    PLoS One; 2013; 8(4):e60473. PubMed ID: 23565253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repair of critical-sized bone defects with anti-miR-31-expressing bone marrow stromal stem cells and poly(glycerol sebacate) scaffolds.
    Deng Y; Bi X; Zhou H; You Z; Wang Y; Gu P; Fan X
    Eur Cell Mater; 2014 Jan; 27():13-24; discussion 24-5. PubMed ID: 24425157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The healing of bone defects by cell-free and stem cell-seeded 3D-printed PLA tissue-engineered scaffolds.
    Bahraminasab M; Talebi A; Doostmohammadi N; Arab S; Ghanbari A; Zarbakhsh S
    J Orthop Surg Res; 2022 Jun; 17(1):320. PubMed ID: 35725606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.
    Liu Y; Li T; Ma H; Zhai D; Deng C; Wang J; Zhuo S; Chang J; Wu C
    Acta Biomater; 2018 Jun; 73():531-546. PubMed ID: 29656075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mouse Wnt1-CRE-Rosa
    Collignon AM; Castillo-Dali G; Gomez E; Guilbert T; Lesieur J; Nicoletti A; Acuna-Mendoza S; Letourneur D; Chaussain C; Rochefort GY; Poliard A
    Stem Cells; 2019 May; 37(5):701-711. PubMed ID: 30674073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of bone regenerative capacity of donor-matched human adipose-derived and bone marrow mesenchymal stem cells.
    Mohamed-Ahmed S; Yassin MA; Rashad A; Espedal H; Idris SB; Finne-Wistrand A; Mustafa K; Vindenes H; Fristad I
    Cell Tissue Res; 2021 Mar; 383(3):1061-1075. PubMed ID: 33242173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.