These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36064734)
1. Ecological succession of the sponge cryptofauna in Hawaiian reefs add new insights to detritus production by pioneering species. Vicente J; Timmers MA; Webb MK; Bahr KD; Jury CP; Toonen RJ Sci Rep; 2022 Sep; 12(1):15093. PubMed ID: 36064734 [TBL] [Abstract][Full Text] [Related]
2. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Rix L; de Goeij JM; Mueller CE; Struck U; Middelburg JJ; van Duyl FC; Al-Horani FA; Wild C; Naumann MS; van Oevelen D Sci Rep; 2016 Jan; 6():18715. PubMed ID: 26740019 [TBL] [Abstract][Full Text] [Related]
3. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds. Gil M; Ramil F; AgÍs JA Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142 [TBL] [Abstract][Full Text] [Related]
4. Looking for the sponge loop: analyses of detritus on a Caribbean forereef using stable isotope and eDNA metabarcoding techniques. Olinger LK; McClenaghan B; Hajibabaei M; Fahner N; Berghuis L; Rajabi H; Erwin P; Lane CS; Pawlik JR PeerJ; 2024; 12():e16970. PubMed ID: 38410802 [TBL] [Abstract][Full Text] [Related]
5. The unnatural history of Kāne'ohe Bay: coral reef resilience in the face of centuries of anthropogenic impacts. Bahr KD; Jokiel PL; Toonen RJ PeerJ; 2015; 3():e950. PubMed ID: 26020007 [TBL] [Abstract][Full Text] [Related]
6. Reduced small-scale structural complexity on sponge-dominated areas of Indo-Pacific coral reefs. Rovellini A; Mortimer CL; Dunn MR; Fulton EA; Jompa J; Haris A; Bell JJ Mar Environ Res; 2024 Jan; 193():106254. PubMed ID: 37979404 [TBL] [Abstract][Full Text] [Related]
7. Morphological and ecological trait diversity reveal sensitivity of herbivorous fish assemblages to coral reef benthic conditions. Pombo-Ayora L; Coker DJ; Carvalho S; Short G; Berumen ML Mar Environ Res; 2020 Dec; 162():105102. PubMed ID: 32814268 [TBL] [Abstract][Full Text] [Related]
8. Complex drivers of invasive macroalgae boom and bust in Kāne'ohe Bay, Hawai'i. Winston M; Fuller K; Neilson BJ; Donovan MK Mar Pollut Bull; 2023 Dec; 197():115744. PubMed ID: 37951125 [TBL] [Abstract][Full Text] [Related]
9. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Bell JJ; Rovellini A; Davy SK; Taylor MW; Fulton EA; Dunn MR; Bennett HM; Kandler NM; Luter HM; Webster NS Ecology; 2018 Sep; 99(9):1920-1931. PubMed ID: 29989167 [TBL] [Abstract][Full Text] [Related]
10. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: what's old, what's new, and future directions. Pawlik JR; Loh TL; McMurray SE PeerJ; 2018; 6():e4343. PubMed ID: 29404224 [TBL] [Abstract][Full Text] [Related]
11. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Chaves-Fonnegra A; Riegl B; Zea S; Lopez JV; Smith T; Brandt M; Gilliam DS Glob Chang Biol; 2018 Feb; 24(2):773-785. PubMed ID: 29076634 [TBL] [Abstract][Full Text] [Related]
12. Sponge organic matter recycling: Reduced detritus production under extreme environmental conditions. Maggioni F; Bell JJ; Pujo-Pay M; Shaffer M; Cerrano C; Lemonnier H; Letourneur Y; Rodolfo-Metalpa R Mar Pollut Bull; 2023 May; 190():114869. PubMed ID: 37023545 [TBL] [Abstract][Full Text] [Related]
13. Coral Reef Arks: An In Situ Mesocosm and Toolkit for Assembling Reef Communities. Baer JL; Carilli J; Chadwick B; Hatay M; van der Geer A; Scholten Y; Barnes W; Aquino J; Ballard A; Little M; Brzenski J; Liu X; Rosen G; Wang PF; Castillo J; Haas AF; Hartmann AC; Rohwer F J Vis Exp; 2023 Jan; (191):. PubMed ID: 36688558 [TBL] [Abstract][Full Text] [Related]
14. Please mind the gap - Visual census and cryptic biodiversity assessment at central Red Sea coral reefs. Pearman JK; Anlauf H; Irigoien X; Carvalho S Mar Environ Res; 2016 Jul; 118():20-30. PubMed ID: 27149573 [TBL] [Abstract][Full Text] [Related]
15. Using biomimicry and bibliometric mapping to guide design and production of artificial coral reefs. Srisuwan W; Sabhasri C; Chansue N; Haetrakul T Mar Environ Res; 2022 Sep; 180():105685. PubMed ID: 36037647 [TBL] [Abstract][Full Text] [Related]
16. Emerging coral diseases in Kāne'ohe Bay, O'ahu, Hawai'i (USA): two major disease outbreaks of acute Montipora white syndrome. Aeby GS; Callahan S; Cox EF; Runyon C; Smith A; Stanton FG; Ushijima B; Work TM Dis Aquat Organ; 2016 May; 119(3):189-98. PubMed ID: 27225202 [TBL] [Abstract][Full Text] [Related]
17. Adaptive responses and local stressor mitigation drive coral resilience in warmer, more acidic oceans. Jury CP; Toonen RJ Proc Biol Sci; 2019 May; 286(1902):20190614. PubMed ID: 31088274 [TBL] [Abstract][Full Text] [Related]
18. Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae. Wilson SK; Depczynski M; Fisher R; Holmes TH; O'Leary RA; Tinkler P PLoS One; 2010 Dec; 5(12):e15185. PubMed ID: 21151875 [TBL] [Abstract][Full Text] [Related]
19. Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. Biggs BC PLoS One; 2013; 8(6):e64945. PubMed ID: 23750219 [TBL] [Abstract][Full Text] [Related]
20. Identity of coral reef herbivores drives variation in ecological processes over multiple spatial scales. Ruttenberg BI; Adam TC; Duran A; Burkepile DE Ecol Appl; 2019 Jun; 29(4):e01893. PubMed ID: 31026114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]