These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 36064855)

  • 21. Decreased connectivity between the thalamus and the neocortex during human nonrapid eye movement sleep.
    Picchioni D; Pixa ML; Fukunaga M; Carr WS; Horovitz SG; Braun AR; Duyn JH
    Sleep; 2014 Feb; 37(2):387-97. PubMed ID: 24497667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phase-based coordination of hippocampal and neocortical oscillations during human sleep.
    Cox R; Rüber T; Staresina BP; Fell J
    Commun Biol; 2020 Apr; 3(1):176. PubMed ID: 32313064
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Communication from the cerebellum to the neocortex during sleep spindles.
    Xu W; De Carvalho F; Clarke AK; Jackson A
    Prog Neurobiol; 2021 Apr; 199():101940. PubMed ID: 33161064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A role for spindles in the onset of rapid eye movement sleep.
    Bandarabadi M; Herrera CG; Gent TC; Bassetti C; Schindler K; Adamantidis AR
    Nat Commun; 2020 Oct; 11(1):5247. PubMed ID: 33067436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates.
    Jiang X; Gonzalez-Martinez J; Halgren E
    J Neurosci; 2019 Oct; 39(44):8744-8761. PubMed ID: 31533977
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia.
    Buchmann A; Dentico D; Peterson MJ; Riedner BA; Sarasso S; Massimini M; Tononi G; Ferrarelli F
    Neuroimage; 2014 Nov; 102 Pt 2(0 2):540-7. PubMed ID: 25139002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Slow oscillations promote long-range effective communication: The key for memory consolidation in a broken-down network.
    Niknazar H; Malerba P; Mednick SC
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2122515119. PubMed ID: 35733258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thalamic lesions in a genetic rat model of absence epilepsy: dissociation between spike-wave discharges and sleep spindles.
    Meeren HK; Veening JG; Möderscheim TA; Coenen AM; van Luijtelaar G
    Exp Neurol; 2009 May; 217(1):25-37. PubMed ID: 19416679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nonrapid eye movement sleep electroencephalographic oscillations in idiopathic rapid eye movement sleep behavior disorder: a study of sleep spindles and slow oscillations.
    Sunwoo JS; Cha KS; Byun JI; Jun JS; Kim TJ; Shin JW; Lee ST; Jung KH; Park KI; Chu K; Kim M; Lee SK; Kim HJ; Schenck CH; Jung KY
    Sleep; 2021 Feb; 44(2):. PubMed ID: 32827438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow oscillation-spindle coupling predicts enhanced memory formation from childhood to adolescence.
    Hahn MA; Heib D; Schabus M; Hoedlmoser K; Helfrich RF
    Elife; 2020 Jun; 9():. PubMed ID: 32579108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. mPFC spindle cycles organize sparse thalamic activation and recently active CA1 cells during non-REM sleep.
    Varela C; Wilson MA
    Elife; 2020 Jun; 9():. PubMed ID: 32525480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coordination of cortical and thalamic activity during non-REM sleep in humans.
    Mak-McCully RA; Rolland M; Sargsyan A; Gonzalez C; Magnin M; Chauvel P; Rey M; Bastuji H; Halgren E
    Nat Commun; 2017 May; 8():15499. PubMed ID: 28541306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Active neocortical processes during quiescent sleep.
    Steriade M
    Arch Ital Biol; 2001 Feb; 139(1-2):37-51. PubMed ID: 11256186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Slow-wave sleep and the consolidation of long-term memory.
    Born J
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():16-21. PubMed ID: 20509828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights on auditory closed-loop stimulation targeting sleep spindles in slow oscillation up-states.
    Ngo HV; Seibold M; Boche DC; Mölle M; Born J
    J Neurosci Methods; 2019 Mar; 316():117-124. PubMed ID: 30194953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Essential thalamic contribution to slow waves of natural sleep.
    David F; Schmiedt JT; Taylor HL; Orban G; Di Giovanni G; Uebele VN; Renger JJ; Lambert RC; Leresche N; Crunelli V
    J Neurosci; 2013 Dec; 33(50):19599-610. PubMed ID: 24336724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thalamus mediates neocortical Down state transition via GABA
    Hay YA; Deperrois N; Fuchsberger T; Quarrell TM; Koerling AL; Paulsen O
    Neuron; 2021 Sep; 109(17):2682-2690.e5. PubMed ID: 34314698
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans.
    Clemens Z; Mölle M; Eross L; Barsi P; Halász P; Born J
    Brain; 2007 Nov; 130(Pt 11):2868-78. PubMed ID: 17615093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential roles of sleep spindles and sleep slow oscillations in memory consolidation.
    Wei Y; Krishnan GP; Komarov M; Bazhenov M
    PLoS Comput Biol; 2018 Jul; 14(7):e1006322. PubMed ID: 29985966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thalamic activity during scalp slow waves in humans.
    Ujma PP; Szalárdy O; Fabó D; Erőss L; Bódizs R
    Neuroimage; 2022 Aug; 257():119325. PubMed ID: 35605767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.